Lotus

@Functions and
Macros Guide

...

Lotus 1-2-3 Release 2.3

Copyright

Under the copyright laws, neither the documentation nor the software may be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or part, without the prior written consent of Lotus Development
Corporation, except in the manner described in the documentation.

© Copyright 1991 Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142

All rights reserved. First Edition Printed 1991. Printed in Ireland.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.

Contents

HowtoUse ThiSBOOK ix
Who Should Use This BOOKuuuuu i ix
Conventions ix
Organization X
Chapter1 @FunctionBasics 1
WhatIsan @Function?o 1
@Function Definitions 1
@Function Formatand Rules 2
@FunctionRules 3
@FunctionHelp 3
ArgumentTypes 3
@Function Types i 4
Add-In@Functionsoiiiiin 5
To Use Add-In@Functions iuueuin e, 5
Database Statistical @FUnctionsc.uuuuesieeeaeaaeennnn. 5
Date and Time @FUNCHONSuut et e 7
Financial @Functions 8
Logical @Functions i 9
Mathematical @FUnctionsun e, 10
Special @Functions 11
Statistical @FUNCONS o i 12
String @Functions 13
Chapter 2 @Function Descriptions 15
@@ .. 15
@ e, 16
@ABS ... 17
@ACOS ..o 17
@ASIN . 18
@ATAN . 19
@ATAN . 19
BAVG . 21
@CELL 22
@CELLPOINTER e i, 23
@CHAR . .., 24
@CHOOSE 25
@CLEAN .. 25
@CODE . .. 26
@COLS .. 27
@COS ., 27
@COUNT .. 28
@CTERM .. 29
@DATE ..o 30

ii

@DATEVALUE . .. e e 31

@DAVG . o 31
@D AY .. 32
@D COUNT ..ot e e 33
@D D B .. 34
@D M A X L 35
@DMIN . 36
@D ST D ... e 37
@D SUM ... 39
@D VAR .. 40
@ER R ... 42
@EXACT .. 42
@EX P .o 43
@FALSE ... e 44
@FIN D ..o 44
@FV 45
@HLOOKUP ..o e 46
@HOUR .. e 47
@IF . 48
@INDEX .. e 49
@INT o e 50
@IRR ..o e 50
@IS AAF . . e 51
@IS AP ... e 52
@ISER R ... e 53
@ISN A . 53
@ISNUMBER ...t e e 54
@ISSTRING ...ttt e e 55
@LEFT . e 56
@LENGTH ... 56
@LN L e 57
@LOG . e 57
@LOWER ... 58
@M A X . e 58
@MID ... e 59
@MIN .. e 60
@MINUTE ... e 60
@M O .. 61
@MONTH ... e 62
@IN L 62
@IN A e 63
@NOW 63
@IN PV e 64
@I ... 65
@M e 66
@PROPER . .. e 67
@PV e 67

iv Contents

@RATE .. 69
@REPEAT . ..o 70
@REPLACE 71
@RIGHT ... o 71
@ROUND ... 72
@ROWS 73
@S 74
@SECOND ... 74
@SIN . 75
@SN ... 75
@SR .. 76
@STD .. 77
@STRING . .. 78
@SUM .. 79
@SYD . 80
BT AN 81
@TERM .. 81
@TIME ... 83
@TIMEVALUE 83
@TRIM .., 84
@TRUE ... 85
@UPPER 85
@VALUE . .. 86
@V AR 87
@VLOOKUP ... e, 88
@YEAR 90
Chapter3 MacroBasics ... 91
WhatIsaMacro?, 91

Macro Definitions i 91
Macro Formatand Rules 92

Keystrokes 93

MacroCommands ... 93

MacroCommand Rules i, 94
Argument Types 94
Macro Location 95
CreatingaMacro 96

ToCreateaMacro 96

Tips for CreatingaMacro i, 97
NamingaMacro 98

ToNameaMacro ... e 98
DocumentingaMacroo i 99
RunningaMacro 99

ToRunaBackslashMacro......... i 100

ToRunaRangeNameMacro 100

Auto-execute Macros 100

Contents v

CancelingaMacroooviiii i 101

Recalculation During Macrosc.oiiiiiiiineniiinenann. 101
Dialog Boxes iInMacroso.ooiuiiiiiiiiiiiiii 101
DebuggingaMacro i 101
Troubleshooting Checklist 102
Debugging aMacroinSTEPMode ...t 102
ToUse STEPMOAEvt it 103
Creating a Macro with the Learn Feature 104
To Record Keystrokes 104
To Edit KeyStrokesouiuiniiiiiiiiiiiiiiiia, 105
To Name and Run a Macro Created withLearn 105
Macro Command Categoriesccoiuiiiiiiiiiiiiii e, 106
Data Manipulation 106
File Manipulationoiiiiiiiiiiiiii 107
Flow-Of-Controlttt 107
DY =3 2= o w < PP 108
Key NAIMESottt et 109
Screen CONIOL .« v\ttt ettt ettt et et e 110
Chapter 4 Macro Command Descriptions m
12 111
S 112
Band {1} ..o 112
FABS) e 112
{APP1}, {APP2}, {APP3},and {APP4} i 113
{APPENDBELOW} and {APPENDRIGHT} oot 113
{BACKSPACE}and {BS}t aaens 115
[BEEP) ..t 115
{BIGLEFT} and {BIGRIGHT}ot 116
[BLANK] ..ot e 116
{BORDERSOFF} and {fBORDERSON} ..., 117
{BRANGCH] ... ittt e e 117
[BREAK) ...ttt e 118
{BREAKOFF} and {BREAKON} 118
[CALC) ..o e s 119
[CLOSE} ..ttt s 120
[CONTENTS) ...ttt e i 120
(DEFINE} .. ot e 122
{DELETE} and {DEL}io it iieens 124
[DISPATCH] ...\ttt e eens 124
(DOWNIand (D}t i ns 125
(B T} .. e 125
[EN DD ..o 125
{ESCAPE} and {ESC}t e es 125
{FILESIZE}ttt i e 125
0200) 3 g 126
{FORBREAK}oouiitiiiiti e 127

vi Contents

[FORMI ... 128

Suspending a {FORM} Command 130
{FORMBREAK] i 132
{FRAMEOFF} and {FRAMEON}o i, 133
(GET} .o 134
{GETLABEL} e 135
{GETNUMBER] 136
{GETPOS} ... 137
{GOTO) ..o 138
{GRAPH] ... 138
{GRAPHOFF} and {GRAPHONY} i, 138
HELP} ..o 139
HOME]} . 139
110 140
{INDICATE} ... e 141
{INSERT} and {INS} 142
{LEFTYand {L} ... 142
LT} .. 142
fLOOK] ... 143
IMENU} 144
{MENUBRANCH} and {MENUCALL}o i i, 144

CreatingaMacroMenu 146
INAME} .. 147
{ONERROR]} ... 147
{OPEN} ... 148
{PANELOFF} and {PANELON} ...ttt 150
{PGDN}and {(PGUP} i 151
PUT 151
{QUERY} . oo 152
(QUITH ..o 152
READY} ... 152
{READLNY} ..o 153
{RECALC} and {RECALCCOL}ooiiiiii i 154
[RESTART) ... 156
{RETURN] ..o 157
{(RIGHT}and {R}t e 157
[SETPOS) ... 158
{subroutine} 158
(SYSTEMY .. 160
{TABLE} ... o 161
{UPand {U} ... e 161
WAL} 162
(WINDOW] 163
{WINDOWSOFF} and {WINDOWSON}ouieiiiinni . 163
{WRITE} .. e e e e 164
{WRITELN} .. 165
The /X Macro Commandsouuiiumm i, 166

Contents vii

Chapter5 SampleMacros, 167

Using the Sample Macros ... 167
ToUseaSample Macroc.oiiiiiiiiiiiiiiiii i 167
Goto Macro (NG) ... 168
ToUseMacro NG . ..o ottt 168
Row-Shifting Macro (\S) 168
ToUSe Macro \S ...ttt e 169
Date Macro (\D) ... 169
ToUseMacro \Dttt 169
Rounding Macro (\R) i 170
ToUse Macro \R o i 171
Column Macro (\NC) ... e 172
ToUsSe Macro NC . ..ottt 172
Mailing Labels Macro (\M) ... 174
ToUse Macro \M e 174
Chapter 6 Using the Macro Library Manager Add-In 177
What Is a Macro Library? i 177
Starting Macro Library Manager i 178
To Attach Macro Library Manager ...t 178
To Invoke Macro Library Managerot 178
Rules for UsingaMacro Library, 179
When to Attach and Detach Macro Library Manager 179
Memory Managementoueiineatint i 179
Duplicate Library Namest 179
Ranges with Links to Other Filest 179
Rules for Macro Commands in a Macro Library 180
Range NamMesottt 180
Executing Subroutines and Menusina Libraryo 180
Macro Commands that Reference Datac.oooii 181
Macro Commands that Contain Formulasooan 181
Recalculation of a Formula Withina Libraryooooii 182
Libraries that Contain /File Retrieve Commands 182
CreatingaMacroLibrary i 182
ToCreateaMacroLibrary ... 182
Saving MacrosinaLibrary i 183
ToSave Macrosina Library, 183
UsingaMacroinaLibrary i 184
ToUseaMacroinaLibrary ... 184
Making Changes to Macrosina Libraryene 185
To Change Macrosina Library ..., 185
Removing a Macro Library from Memoryo 186
To Remove a Macro Library fromMemoryt 186
Using Macro Library ManageronaNetwork 186
Macro Library Command Summary ... 187
INdex 189

viii Contents

How to Use This Book

Use the @Functions and Macros Guide to learn about Lotus® 1-2-3® @functions and
macros. It provides examples of how you can use @functions to perform a variety
of calculations and how you can use macros to automate your work.

Who Should Use This Book

The @Functions and Macros Guide is designed for readers who have a general
knowledge of 1-2-3 procedures and concepts.

Conventions

The following conventions are used throughout the @Functions and Macros Guide:

¢ @Function names and macro keywords are in uppercase letters, but you can use
uppercase or lowercase letters.

Example: @SUM(A2..A15)

¢ Arguments for @functions and macros are in lowercase italics.
Example: @TIME(hour,minutes,seconds)

¢ Optional arguments for @functions and macros are in [] (brackets).
Example: {RECALC location,[condition],[iterations]}

* Function keys and special keys are in small capitals. Keys are identified by
the appropriate key sequence, followed by the 1-2-3 key name.

Example: F1 (HELP)

¢ Key names separated by a - (hyphen) indicate that you must press and hold
down the first key, press the second key, and then release both keys.

Example: CTRL-—

* Key names separated by a space indicate that you must press the first key
and release it, and then press the second key and release it.

Example: END HOME

* Information that you type appears in a different typeface.
Example: Expenses

EE) Indicates information or instructions for network users.

Words that are in bold are defined in text where they appear.

ix

Organization

This book contains six chapters:

Chapter 1, “@Function Basics,” provides basic rules for entering @functions and
describes the different types of @functions in 1-2-3.

Chapter 2, “@Function Descriptions,” contains descriptions and examples of each
@function, arranged alphabetically.

Chapter 3, “Macro Basics,” introduces macros and explains the basic procedures
for creating and running macros.

Chapter 4, “Macro Command Descriptions,” contains descriptions and examples
of each macro command, arranged alphabetically.

Chapter 5, “Sample Macros,” contains several short, general-purpose macros that
illustrate macro concepts and techniques. These macros are in a worksheet file
named SAMPMACS.WKI1. The Install program transferred this worksheet to
your 1-2-3 program directory during installation.

Chapter 6, “Using the Macro Library Manager Add-In,” explains how to create
libraries of macros for use with any worksheet.

x @Functions and Macros Guide

Chapter 1
@Function Basics

This chapter provides basic rules for entering @functions and describes the different
types of @functions in 1-2-3. Chapter 2, beginning on page15, describes each
@function and its arguments, and provides an example of its use.

What Is an @Function?

An @function is a built-in formula in 1-2-3 that performs a specialized calculation
automatically. Some @functions perform simple calculations. For example, @ UM
adds the values in a range. @S UM(D1..D7) adds the values in the range D1..D?7.
Using @SUM is easier than writing out the formula +D1+D2+D3+D4+D5+D6+D?7.
Other @functions replace complex formulas. For example, @NPV calculates the net
present value of a series of future cash-flow values.

You can use an @function by itself as a formula, combine it with other @functions and
formulas, or use it in a macro.

@Function Definitions

The following examples show the different elements you use when you enter
@functions.

@Function @SUM(D1..D7)

Argument
@CHOOSE(3,A1,A2,A3,A4)

Offset number I
@CELL(“type”,D7)

Double quotation marks | |
@DATE(52,12,16)

Argument separators I |

@INT(@SUM(D1..D7))
Nested parentheses | |

Argument is data you provide for 1-2-3 to use when it calculates the @function. The
arguments you provide depend on the @function you use.

Argument separators separate two or more arguments. 1-2-3 allows three argument
separators: , (comma), ; (semicolon), and . (period). You can always use a

; (semicolon) to separate arguments and, depending on the setting of /Worksheet
Global Default Other International Punctuation, you can also use either . (period) or
, (comma).

Double quotation marks (“) enclose text in arguments in string @functions. 1-2-3
assumes that text not in double quotation marks is a range name.

Offset number corresponds to the position of a character in text or a field or row in a
database. Offset numbers start at zero. For example, in the label MAHER, the offset
number of M is 0, of A is 1, of H is 2, and so on. A field’s offset number corresponds
to the position of the column the field occupies in the input range (or database). The
first (leftmost) field of the input range (or database) has an offset number of 0, the
second field has an offset number of 1, and so on. String and database statistical
@functions use offset numbers.

Parentheses enclose arguments. If you use an @function as an argument for another
@function, you must nest the parentheses: enclose the @function you are using as an
argument within the parentheses of the primary @function. @INT(@SUM(D1..D7)),
for example, uses @SUM and its argument as the argument for the primary
@function @INT.

@Function Format and Rules

The format of an @function is

@FUNCTION

or

@FUNCTION (argument1,argument2,...,argumentn)

@FUNCTION is the name of the @function. The @function name tells 1-2-3 what
action to perform. The @ (at sign) identifies the entry in the cell as an @function,
rather than a label. You can type @functions in uppercase or lowercase letters, but
this book refers to @function names in uppercase letters.

(argument1,argument2,...argumentn) are the arguments for the @function. You can
type arguments in uppercase or lowercase letters; this book refers to arguments in
lowercase italics. Some @functions have optional arguments (arguments you can
omit). This book shows optional arguments in [] (brackets). You enclose arguments
in () (parentheses). @Functions that don’t require arguments are not followed by
parentheses.

1-2-3 changes the @functions and arguments you enter (except text arguments) to
uppercase letters.

2 @Functions and Macros Guide

@Function Rules

Observe the following rules when you write an @function:

* Enter each @function (@function name and arguments, if any) in a single cell. An
@function and its arguments cannot exceed 240 characters. Enclose arguments
in () (parentheses).

* Do not type spaces between arguments.

¢ Use, (comma), ; (semicolon), or . (period) to separate arguments. You can always
use a ; (semicolon) to separate arguments and, depending on the setting of
/Worksheet Global Default Other International Punctuation, you can also use
either . (period) or , (comma).

* Do not use a comma, semicolon, period, or parenthesis as part of an argument,
unless you enclose the argument in double quotation marks.

* You do not need to use + (plus) to enter an @function. For example, use
@SUM(A1..A5)*2 instead of +@SUM(A1..A5)*2.

@Function Help

You can press F1 (HELP) when you are entering an @function to get information about

the @function.

Argument Types

1-2-3 @functions accept four types of arguments.

Type

Description

Condition

Location

String

Value

An expression that uses a relational or logical operator (< > = <> >= <=
#NOT# #AND# and #OR#). The @function evaluates the condition
argument and proceeds according to whether it is true or false. You can
also use a formula or @function, a number, text, or a range name or cell
address as a condition argument.

The address or name of a cell or range, or a formula or @function that
returns a range address or name. A location argument can refer to a
single-cell or a multiple-cell range.

Text (any sequence of letters, numbers, and symbols) enclosed in double
quotation marks, the range address or name of a cell that contains a label,
or a formula or @function that returns a label. String @functions use text
arguments.

A number, the address or name of a cell that contains a number, or a
formula or @function that returns a number.

@Function Basics 3

Keep the following information in mind when you use @functions that require
arguments:

Use range names to ensure that location arguments are correct even if you insert
or delete rows or columns.

If the argument you specify for an @function is a single-cell range and the cell is
blank, 1-2-3 uses zero as the argument (except for @ COUNT, where 1-2-3 uses the
value 1 as the argument). Statistical @functions ignore blank cells in multiple-cell
range arguments. (A blank cell is a cell that does not contain an entry or a
label-prefix character.)

Several @functions require a range for a location argument, but they use only the
cell in the upper left corner. Other @functions that require a single cell allow a
range only if it is a single-cell range.

Two @functions (2CELL and @CELLPOINTER) require specific attributes, one
of which you must use as the argument. Enclose the attribute in “” (double
quotation marks), as you do with all text used as arguments. For more
information about attributes, see the table that begins on page22.

@Function Types

1-2-3 has nine types of @functions.

Type Description

Add-in Increase the number of @functions you can use to work with data in
1-2-3. Add-in @functions are available from third-party software
developers.

Database Perform statistical calculations and queries on a 1-2-3 database.

statistical

Date and time Calculate values that represent dates and times.

Financial Calculate values for loans, annuities, cash flow, and depreciation.

Logical Calculate formulas based on conditions that are either true or false.

Mathematical Calculate with numbers.

Special Perform a variety of worksheet tasks, such as looking up a value in a
table or providing information about a specific cell.

Statistical Perform statistical analysis on data.

String Evaluate and manipulate labels, text formulas, or text enclosed in double

quotation marks.

4 @Functions and Macros Guide

Add-In @Functions

Add-in @functions are @functions supplied by add-in programs. Add-in @functions
increase the number of @functions you can use to work with data in 1-2-3. Once you
use /Add-In Attach (see “Using an Add-In” in Chapter 2 of the User’s Guide), to
attach an add-in program that has add-in @functions, you can use add-in @functions
as you would any built-in 1-2-3 @function. When you use add-in @functions, follow
the @function rules on page 3. For information on installing and using add-in
@functions, refer to the documentation for your add-in program.

To Use Add-In @Functions
1. Start 1-2-3.

2. Use /Add-In Attach to attach the add-in program that provides the @functions.
3. Use /File Retrieve to retrieve the worksheet that contains the add-in @functions.

You can now use the add-in @functions as you would any built-in 1-2-3 @function.
The add-in @functions remain in memory until you end the 1-2-3 session. You
cannot detach add-in @functions to free memory during a session.

NOTE If you retrieve a worksheet that contains add-in @functions without first
attaching the appropriate add-in, each add-in @function is displayed as @? in the
control panel and returns the value NA in the worksheet. To correct this, you must
attach the add-in and then retrieve the worksheet again.

Database Statistical @Functions

Database statistical @functions scan a database, select records that meet the criteria in
a criteria range, and then perform calculations on the selected records, in the field
you specify. You can use database statistical @functions on any range of related data
organized in rows and columns, as long as the columns have unique field names and
you provide a criteria range. A field name is a label in the first row of a field that
identifies contents of the field.

Most database statistical @functions have equivalent statistical @functions. Use the
database statistical @functions to select and use only those values in a field that meet
specific criteria. Use the statistical @functions to calculate all values in a range. For
example, use @DAVG to find the average of values that meet criteria you specify,
such as the average sales in July by each salesperson. Use @AVG to calculate the
average value for a range, such as the average of all sales. Using database statistical
@functions is equivalent to using the corresponding statistical @function on the
results of a Data Query command.

@Function Basics 5

F40: (CO) [W10] QDMINCSALES,4,CRIT_RANGE) READY

A B C D G <4
25 DATE ADDRESS BR OFFERED >
26 03-Apr 467 Brattle 4 $775,000 F'S
27 05-Apr 183 Hillside 3 325,000 v
28 10-Apr 64 N. Gate 2 340,000 1
29 14-Apr 80 H't‘. Auburn E 2%,%
30 25-Apr 14 Charles 179,
31 27-Apr 1160 Memorial 1 230,000 Input range SALES
32 04-May 130 Crescent 3 ,000 (A25..F35)
33 10-May 12 Trenton 2 310,000
34 11-May 36 Barnes 4 680,000
35 22-May 234 Third 2 155,000
36
. =]
38 Field whose offset
39 .
40 Lowest price for a 2-bedrdom house, APRIL and MAY number is 4
41

@DMIN(SALES 4,CRIT_RANGE)
Criteria range CRIT_RANGE

All database statistical @functions have the same three arguments: input, field, and
criteria.

input is the address or name of a range that contains a database. In the illustration
above, SALES is the range name for the input range. You do not need to use /Data
Query to identify an input range before you use it as an argument in a database
@function.

field is an offset number (or the address of a cell that contains the offset number) that
indicates the field’s position in input. A field is a column of related data in a
database, including the field name. Offset numbers begin with 0, so if field is a value
greater than the number of columns in the database minus 1, the @function returns
ERR.

criteria is a range that specifies selection requirements. A criteria range occupies cells
in at least two rows. The first row contains some or all the field names in the input
range. The second row (and any subsequent rows) contains criteria that determine
what records 1-2-3 selects. Enter criteria directly below the field name of the field to
which they apply. criteria can be a range address or the name of a range. In the
illustration above, CRIT_RANGE is the range name for the criteria range. For more
information about criteria, see “Writing Criteria” in Chapter 14 of the User’s Guide.

In the illustration above, @DMIN(SALES,4,CRIT_RANGE), entered in cell F40,
returned the lowest price for which a two-bedroom house was sold.

6 @Functions and Macros Guide

@Function Description

@DAVG Averages values in a field.

@DCOUNT Counts the nonblank cells in a field.

@DMAX Finds the greatest value in a field.

@DMIN Finds the least value in a field.

@DSTD Calculates the standard deviation of the values in a field.
@DSUM Sums the values in a field.

@DVAR Calculates the population variance of the values in a field.

Date and Time @Functions

Date and time @functions calculate with date numbers, numbers that correspond to
dates from January 1, 1900 (the number 1), through December 31, 2099 (the number
73050), and times from 12:00 midnight (the number 0.000000) through 11:59:59 PM
(the number 0.999988). Date and time @functions simplify tasks such as calculating
differences between two dates or two times, sorting by dates or times, and
comparing a range of dates or times to a particular date or time.

To display a date or time number as the date or time it represents, format the cell that
contains the date or time number with /Range Format Date or /Worksheet Global
Format Date. For example, @DATE(88,3,7) returns the date number 32209. You can
format this number to appear on the screen as 07-Mar-88, 07-Mar, Mar-88, or in an
international date format. @TIME(14,30,50) returns the time number 0.604745. You
can format this number to appear as 02:30 PM, 02:30:50 PM, or in an international
time format.

1-2-3 uses only the integer part of a number in an @function that calculates dates. For
example, both @YEAR(31790.45) and @YEAR(31790) return 87. 1-2-3 uses only the
decimal portion of a number in an @function that calculates time. For example, both
@HOUR(.03125) and @HOUR(31920.03125) return 0 (midnight). 1-2-3 calculates the
decimal portion by using the ratio of the number of seconds since midnight to the
number of seconds in a day.

Five @functions calculate with dates.

@Function Description

@DATE Calculates the date number for specified year, month, and day values.
@DATEVALUE Converts text that looks like a date into its equivalent date number.
@DAY Calculates the day of the month from a date number.

@MONTH Calculates the number of the month from a date number.

@YEAR Calculates the number of the year from a date number.

@Function Basics 7

Five @functions calculate with times.

@Function Description

@HOUR Calculates the hour from a time number.

@MINUTE Calculates the minutes from a time number.

@SECOND Calculates the seconds from a time number.

@TIME Calculates the time number for specified hour, minutes, and seconds
values.

@TIMEVALUE Converts text that looks like a time into its equivalent time number.

One @function calculates the current date and/or time number.

@°Function Description

@NOW Calculates the date and time number that corresponds to the current
date and time set on your computer’s clock.

Financial @Functions

Financial @functions replace complex formulas that analyze investments and
annuities, determine depreciation, and calculate cash flow and loan values.

Keep the following rules in mind when you use financial @functions:

o Interest rates must be either percentages or decimal values. For example, you can
enter 15.5% either as .155 or as 15.5%, but not as 15.5. When you enter a formula,
1-2-3 converts all values followed by % (percent) to decimal values.

o Interest rates and payment periods must use the same unit of time. For example,
if the annual interest rate is 15.5% and the payment period is monthly, divide
15.5% by 12 to find the interest rate per month.

e Financial @functions assume that investments are ordinary annuities. An
annuity is an investment in which a series of equal payments are made. An
ordinary annuity is an annuity in which a payment is made at the end of each
period. An annuity due is an annuity in which a payment is made at the
beginning of each period. To convert to an annuity due, multiply the entire
@function by (1 + interest).

Three financial @functions calculate depreciation.

@Function Description

@DDB Calculates the double-declining balance depreciation allowance of an
asset.

@SLN Calculates the straight-line depreciation allowance of an asset.

@SYD Calculates the sum-of-the-years'-digits depreciation allowance of an
asset.

8 @Functions and Macros Guide

Two financial @functions are used for capital budgeting.

@Function Description
@IRR Calculates the internal rate of return for a series of cash-flow values.
@NPV Calculates the net present value of a series of future cash-flow values.

Four financial @functions calculate annuities.

@Function Description

@FV Calculates the future value of a series of equal payments.

@PMT Calculates the amount of the periodic payment needed to pay off a
loan.

@PV Calculates the present value of a series of equal payments.

@TERM Calculates the number of payment periods of an investment.

Two financial @functions calculate single-sum compounding.

@Function Description

@CTERM Calculates the number of compounding periods necessary for an

investment to grow to a given future value.

@RATE Calculates the periodic interest rate necessary for an investment to

grow to a given future value.

Logical @Functions

Logical @functions evaluate Boolean conditions — conditions that are either true
(returning the value 1) or false (returning the value 0). Except for @IF, all the logical
@functions return either 1 or 0 — they cannot return any other values, including ERR
(error) or NA (not available).

Use logical @functions in the following situations:

Use @ISERR and @ISNA to test for the values ERR and NA. These values cause a
ripple-through effect: when formulas return ERR or NA, other formulas that
depend on them also return ERR or NA. For example, if a formula in cell D25
returns ERR, @AVG(D9..D56) and +C25+D25+E25 also return ERR, because both
refer to cell D25.

Use @ISERR and @ISNA with @IF to stop the ripple-through effect. For example,
the formula @IF(@ISERR(D25),0,D25/2) returns 0 if cell D25 contains the value
ERR, preventing 1-2-3 from evaluating D25/2, which would return ERR.

Use @ISNUMBER and @ISSTRING to prevent errors that may occur if a cell

used in a formula contains the wrong type of data. For example,
@IF(@ISNUMBER(D9),@AVG(A9..]9),“Label”) returns the result of @AVG(A9..J9)
if cell D9 contains a value or is blank. If cell D9 contains a label, it returns the
word Label.

@Function Basics 9

e Use @ISAAF and @ISAPP to return information about the status of add-in
@functions and add-in programs. For example, @ISAPP(“Wysiwyg”) returns
1 if the add-in program called Wysiwyg is currently attached.

All logical @functions take a value, a special value (ERR or NA), a cell address, or a
single-cell range name as an argument.

@Function Description

@FALSE Returns the logical value 0 (false).

@IF Returns one value if the condition is true, and another value if the
condition is false.

@ISAAF Returns 1 (true) for an attached add-in @function; 0 (false) for any
other entry.

@ISAPP Returns 1 (true) for a currently attached add-in; O (false) for any
other entry.

@ISERR Returns 1 (true) for the value ERR; O (false) for any other value.

@ISNA Returns 1 (true) for the value NA; 0 (false) for any other value.

@ISNUMBER Returns 1 (true) for a numeric value, NA, ERR, or a blank cell; 0 (false)
for a string.

@ISSTRING Returns 1 (true) for a label or a string; O (false) for a numeric value, NA,
ERR, or a blank cell.

@TRUE Returns the logical value 1 (true).

Mathematical @Functions

Mathematical @functions simplify various mathematical operations, such as
calculating square roots and complex trigonometric functions. Some mathematical
@functions return new values, while others affect values calculated by other formulas
or @functions.

When you use mathematical @functions, observe the following rules:

e @SIN, @COS, and @TAN require angles in radians. To convert degrees to radians,
multiply the number of degrees by @P1/180.

e @ASIN, @ACOS, @ATAN, and @ATAN? return angle values in radians. To
convert radians to degrees, multiply the number of radians by 180/@PL

Mathematical @functions use only values (a value, a special value such as ERR or
NA, a cell address, or a single-cell range name) as arguments. These @functions

do not accept multiple-cell ranges. Except as otherwise noted, any mathematical
@function accepts a blank cell or empty string (a string with a length of 0). The result
is the same as applying the @function to the value 0.

10 @Functions and Macros Guide

@Function

Description

@ABS
@ACOS
@ASIN
@ATAN
@ATAN2
@COS
@EXP
@INT
@LN
@LOG
@MOD
@PI
@RAND
@ROUND
@SIN
@SQRT
@TAN

Calculates the absolute (positive) value of a value.
Calculates the arc cosine of a value.

Calculates the arc sine of a value.

Calculates the arc tangent of a value.

Calculates the arc tangent of the quotient of two values.
Calculates the cosine of an angle.

Calculates the natural logarithm (base e) raised to a specified power.
Returns the integer portion of a value.

Calculates the natural logarithm (base ¢) of a value.
Calculates the common logarithm (base 10) of a value.
Calculates the remainder (modulus) of two values.
Returns the value m (approximately 3.1415926536).
Generates a random value between 0 and 1.

Rounds a value to a specified number of decimal places.
Calculates the sine of an angle.

Calculates the positive square root of a value.
Calculates the tangent of an angle.

Special @Functions

Special @functions return information about cells or ranges, find the contents of a
cell, or mark places where information is missing or incorrect. These @functions are
particularly useful with macros.

@Function Description

@@ Returns the contents of a cell referenced through another cell.

@? Indicates an unknown @function from an add-in program.

@CELL Returns information about a cell or its contents or settings.

@CELLPOINTER Returns information about the current cell or its contents or settings.

@CHOOSE Finds a specified value or string in a list of values and/or strings.

@COLS Counts the columns in a range.

@ERR Marks cells that depend on information that is currently incorrect.

@HLOOKUP Finds the contents of a cell in a specified row in a horizontal
lookup table.

@INDEX Finds the contents of the cell in a row and column in a range.

@NA Marks cells that depend on information that is not available.

(continued)

@Function Basics 11

@°Function Description

@ROWS Counts the rows in a range.
@VLOOKUP Finds the contents of a cell in a specified column in a vertical
lookup table.

Statistical @Functions

Statistical @functions perform calculations on a list of values in a range. Each
statistical @function has an equivalent database statistical @function. For example,
you use @AVG to calculate the average value for a range; you use @DAVG to find the
average value of values that meet criteria you specify. Use the database statistical
@functions to calculate values in a field that meet specific criteria.

Observe the following guidelines for all statistical @functions:

o The statistical @functions ignore blank cells in a multiple-cell range used as the
argument, but they do not ignore references to blank cells listed individually as
part of an argument. For example, if you use @AVG to average the values in a
range that spans four cells (A1..A4), and cell A2 is a blank cell, 1-2-3 divides the
sum by three to find the correct average. If you list those four cells individually,
however, (A1,A2,A3,A4), 1-2-3 divides the sum by four.

o All statistical @functions assign the value 0 (not ERR) to all labels in a range
or list of values used as the argument, and include the labels in calculations.
For example, if you use @AVG to calculate the average value for a range, and the
range contains a label, 1-2-3 considers the label to have the value 0 when it
calculates the average. Check for labels in the ranges you use in the @function to
guard against unexpected results.

e All statistical @functions except @ COUNT return ERR or NA if any cell in a range
or list used as the argument contains ERR or NA.

All statistical @functions have the argument list. There can be one or more entries
in list. Each entry in list can be a value, a cell, a range address, or a range name.
For example, the argument list in the @function @AVG(12,B3..B8,SALES) contains a
value, a multiple-cell range address, and a range name.

@Function Description

@AVG Averages a list of values.

@COUNT Counts the nonblank cells in a range or list.

@MAX Finds the greatest value in a list of values.

@MIN Finds the least value in a list of values.

@STD Calculates the standard deviation of the values in a list.
@SUM Sums the values in a list.

@VAR Calculates the population variance of the values in a list.

12 @Functions and Macros Guide

String @Functions

String @functions provide information about text in cells, and perform other

operations on text.

Observe the following rules when you use string @functions:

¢ Text arguments must be in double quotation marks. For example, enter
@LEFT(“Monthly Expenses”,5) to return the string Month.

¢ Ifacell contains one of the label prefixes ” ’ ~ or i but contains no text, 1-2-3
treats it as an empty string, a string with a length of 0. The cell looks blank,
but 1-2-3 will not return the value ERR when you use it as an argument in a
string @function.

» Uppercase and lowercase letters have different character codes in the Lotus
International Character Set (LICS). For example, @CODE(“A”) returns the
code number 65, but @CODE(“a”) returns 97 and @ CODE(“4”) returns 225.
For information on LICS, see Appendix A of the User’s Guide.

@Function Description

@CHAR Returns the character that corresponds to a code number in the Lotus
International Character Set (LICS).

@CLEAN Removes control characters from a string.

@CODE Returns the LICS code number that corresponds to the first character in
a string.

@EXACT Returns 1 (true) if two strings are the same, and 0 (false) if the strings
are different.

@FIND Returns the position of the first character of one string within another
string.

@LEFT Returns the specified number of characters from the beginning of a
string.

@LENGTH Counts the characters in a string.

@LOWER Converts all the letters in a string to lowercase.

@MID Returns a specified number of characters in a string, starting at a
specified character.

@N Returns the value in the first cell in a range or 0 if the cell contains a
label.

@PROPER Converts the first letter in each word in a string to uppercase, and the
rest to lowercase.

@REPEAT Duplicates a string a specified number of times.

@REPLACE Replaces characters in one string with characters from a different
string.

@RIGHT Returns the specified number of characters from the end of a string.

(continued)

@Function Basics 13

@Function Description

@S Returns the string value of the first cell in a range.

@STRING Converts a value into a label with a specified number of decimal places.
@TRIM Removes leading, trailing, and consecutive spaces from a string.
@UPPER Converts all the letters in a string to uppercase.

@VALUE Converts a string that looks like a number into a value.

14 @Functions and Macros Guide

Chapter 2
@Function Descriptions

This chapter lists the @functions alphabetically. Each @function is described in detail,
and includes one or more examples to show the syntax and use of the @function.

The descriptions of the @functions use the following conventions:

* @Function names appear in uppercase. When you enter an @function, you
can use either uppercase or lowercase letters.

¢ Argument names in the @function definitions appear in lowercase italics.
You must substitute the type of information required by that argument.

* Arguments used in examples are not italicized.

* Optional arguments are enclosed in [] (brackets). You do not need to specify
an optional argument for the @function to work. When you use an optional
argument, do not enter the brackets.

¢ Inthe examples, ... (ellipses) indicate that the example is an excerpt from a
macro or application whose other instructions are not relevant.

@@

@@(location) returns the cell or range address produced by location.

Argument

location is the address or name of a cell that contains a cell address or name, or a

text formula that returns the address or name of a cell. location points to another cell
whose contents @@ displays in the cell that contains @@. If location is not a valid cell
address or range name, or is a multiple-cell range, @@ returns ERR.

Uses

@@ is useful as an indirect cell reference. For example, if cell C8 contains the label
A10, the formula @@(C8) returns the value in cell A10.

You can also use @@ to return a cell or range address to another @function. For
example, if the label A1..A10 is in cell B4, the formula @SUM(@@(B4)) returns the
sum of the range A1..A10.

@Q@ is useful in building conditional formulas because its indirect reference can
automatically alter its own value. For example, if A10 contains the formula
@IF(DISCOUNT="Y",”"D8” @IF(DISCOUNT="N",”“D9”,@ERR)), and E2 contains
the formula @@(A10), 1-2-3 returns the contents of cell D8 or D9, or ERR, in E2,
depending on whether cell DISCOUNT contains Y or N, or something else.

15

Notes

@@ differs from other @functions that manipulate text or return cell addresses.
@Functions that manipulate text usually return a label as the result; @@ returns
the actual cell address of the label in location.

1-2-3 recalculates all @@ functions when the worksheet is recalculated.

Examples
@@(C8) returns the value in cell A10, if cell C8 contains the label A10.

The following illustration shows a sales commission chart. @@(A11) in cell D4
returns the contents of C8, which is the cell specified in cell A11. A1l contains an @IF
formula that enters one of two cell addresses, depending on which product code you
enter in D3. If you enter anything in D3 other than a valid product code, both the @IF
and @@ functions return ERR.

D4 PO OV BBCAID)

':SOMNOW!WNA

@IF(D3="W"“C8",@IF(D3="G","C9",@ERR))

@?

@? is a special @function that 1-2-3 uses to indicate the location of an unknown
add-in @function that is referred to by a formula in a worksheet.

Uses

1-2-3 works with add-ins that provide their own @functions. If you retrieve a
worksheet that contains add-in @functions without first attaching the appropriate
add-in, 1-2-3 translates the @function name to @? and interprets the @function as NA.

Notes

You cannot enter @? directly in a worksheet.

16 @Functions and Macros Guide

@ABS

@ABS(x) calculates the absolute value of x.

Argument

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value.

Uses

Use @ABS when you need numbers to be non-negative, such as percentage
differences between actual and budgeted values, or to find the absolute difference
between values in a list of positive and negative values.

Use @SQRT with @ABS to prevent ERR when you need to find the square root of a
negative number.

Notes
Use —@ABS to force the result of the @function to be negative.

Examples

@ABS(AS) = 25, if cell A5 contains the value 25, 25, or a formula that results in
25 or -25.

—@ABS(A5) = -25, if cell A5 contains the value 25, -25, or a formula that results in
25 or -25.

@ABS(SALES*A9) = 20, if cell SALES contains the value 2 and cell A9 contains the
value 10, -10, or a formula that results in 10 or -10.

@ABS(0) = 0.

@ACOS

@ACOS(x) calculates the arc cosine (inverse cosine) using the cosine x of an angle.
The result of @ACOS is an angle, in radians, from 0 through n. This represents an
angle between 0° and 180°.

Argument

x is the cosine of an angle and can be a value, the address or name of a cell that
contains a value, or a formula that returns a value from -1 through 1.

Uses

Use @ACOS to find the size of an angle when you know the cosine of the angle.
@ACOS calculates the angle between the hypotenuse and the side adjacent to the
angle in a right triangle.

@Function Descriptions

17

Notes
To convert radians to degrees, multiply by 180/@PL.

Example

In the right triangle below, you calculate the cosine of angle x before you use @ACOS
to find the arc cosine of the angle.

The cosine of x (calculated as cosine = adjacent/hypotenuse) is 1/2,
or 0.5. To determine the arc cosine, use @ACOS(0.5).

The result is 1.04720, rounded. To convert this to degrees, use
@ACOS(0.5)*180/@PL.

s
&
A
(8}
N
<

opposite

The result is 60°, the size of angle x.
X

adjacent

@ASIN

@ASIN(x) calculates the arc sine (inverse sine) using the sine x of an angle. The result
of @ASIN is an angle, in radians, from —1t/2 through n/2. This represents an angle
between —90° and 90°.

Argument

x is the sine of an angle and can be a value, the address or name of a cell that contains
a value, or a formula that returns a value from -1 through 1.

Uses

Use @ASIN to find the size of an angle when you know the sine of the angle. @ASIN
calculates the angle between the hypotenuse and the side adjacent to the angle in a
right triangle.

Notes
To convert radians to degrees, multiply by 180/@PL

Example

In the right triangle below, you calculate the sine of angle x before you use @ASIN to
find the arc sine of the angle.

The sine of x is 2/3, or 0.66 (calculated as sine =
opposite/hypotenuse). To determine the arc sine, use
@ASIN(.66).

The result is .72082, rounded. To convert the result to
degrees, use @ASIN(.66)*180/@PL The result is 41.3°
(rounded), the size of angle x.

adjacent

18 @Functions and Macros Guide

@ATAN

@ATAN(x) calculates the arc tangent (inverse tangent) using the tangent x of an
angle. The result of @ATAN is an angle, in radians, from —n/2 through n/2. This
represents an angle between -90° and 90°.

Argument

x is the tangent of an angle and can be any value, the address or name of a cell that
contains a value, or a formula that returns a value.

Uses

Use @ATAN to find the size of an angle when you know the tangent of the angle.
@ATAN calculates the angle between the hypotenuse and the adjacent side.

Notes
To convert radians to degrees, multiply by 180/@PI.

Example

In the right triangle below, you calculate the tangent of angle x before you use
@ATAN to find the arc tangent of the angle.

The tangent of x (calculated as tangent = opposite/adjacent) is
7/4, or 1.75. To determine the arc tangent, use @ATAN(1.75).

The result is 1.10517, rounded. To convert this to degrees, use
7 @ATAN(1.75)*180/@PI.

The result is 60.3° (rounded), the size of angle x.

@ATAN2

@ATAN2(x,y) calculates the arc tangent using the tangent y/x of an angle. The result
of @ATAN2 is an angle, in radians, from —x through n. This represents an angle
between -180° and 180°, depending on the sign of x and y (see the table on page 20).

Arguments

x and y are values, the addresses or names of cells that contain values, or formulas
that return values. If y is 0, @ATAN?2 returns 0; if both x and y are 0, @ATAN?2 returns
ERR.

@Function Descriptions 19

Uses

Use @ATANR to find the size of an angle in any of the four quadrants when you
know the length of the two sides (x and y) that form the right angle in a right triangle.
@ATAN? calculates the angle between the hypotenuse and either of the sides that
form the right angle, without first having to calculate the tangent.

Notes
To convert radians to degrees, multiply by 180/@PL

@ATAN? differs from @ATAN in that the result of @ATAN? is a value from —x to .
The table below lists the value ranges for @ATAN2.

b y @ATAN2(x,y) Quadrant y %
Positive Positive From 0 through m/2 | I 2 |
Negative Positive From m/2 through 1t I
Negative ~ Negative From —r through -2 Il 180 [& 0
Positive Negative From —m/2 through0 IV -180 \ 7T "

-2/ N

i
-90

When x and y are both positive (quadrant I), and when x is positive and y is negative
(quadrant IV), the results are the same as for @ATAN.

Example
In the right triangle below, use @ATAN2 to find the size of the angle x.

y

The tangent of x is -1/-1, or 1. To determine the arc
I I tangent, use @ATAN2(-1,-1).

The result is —2.35619, rounded. To convert this to
l « degrees, use @ATAN2(-1,-1)*180/@PL

A

. The result is —135°, the size of angle x.

20 @Functions and Macros Guide

@AVG

@AVG(list) calculates the average of a list of values.

Argument

list is a series of values separated by argument separators. list can contain any
combination of values, formulas, and the addresses or names of ranges that contain
values.

Uses

Use @AVG to find the average, or mean, of any series of values in a worksheet.

Notes

@AVG ignores blank cells in ranges, but not references to blank cells listed
individually. Labels count as zero, as do cells that are apparently empty but contain
a label-prefix character or spaces. This means that labels, apparently empty cells, and
blank cells listed individually increase the total number of items in list; if list contains
any of these, the result of @AVG may not be what you expect.

Example

In the following illustration, @AVG(A1..A5) entered in G4 returns 43.75 and
@AVG(A1,A2,A3,A4,A5) entered in G5 returns 35. This is because the blank cell (A4)
is listed individually and causes 1-2-3 to divide the total by five.

A blank cell

Similar @functions
@DAVG finds the average of values that meet criteria you specify.

@Function Descriptions 21

@CELL

@CELL(attribute,range) returns information about the first cell in range. The
information depends on the attribute you specify.

Arguments

attribute can be any of the 10 items listed in the table below, enclosed in double
quotation marks, or the address or name of a cell that contains one of the items.

Attribute Result

address The absolute cell address (for example, A1)

col The column letter, as a value from 1 through 256 (1 for column A,
5 for column E, and so on)

contents The contents of the cell

filename The name of the current file including the path

format The cell format:

CO through C15 if Currency, 0 to 15 decimal places

FO through F15 if Fixed, 0 to 15 decimal places

G if General

PO through P15 if Percent, 0 to 15 decimal places

S0 through S15 if Sci (Scientific), 0 to 15 decimal places
,0to,15if , (Comma), 0 to 15 decimal places

+ if +/— format

D1 if DD-MMM-YY

D2 if DD-MMM

D3 if MMM-YY

D4 it MM/DD/YY, DD/MM/YY, DD.MM.YY, or YY-MM-DD

D5 if MM/DD, DD/MM, DD.MM, or MM-DD

D6 if HH:MM:SS AM/PM

D7 if HH:MM AM/PM

D8 if HH:MM:SS (24 hour), HH.MM.SS (24 hour), HH,MM,SS
(24 hour), or HHhMMmSSs

D9 if HH:MM (24 hour), HH.MM (24 hour), HH,MM, or HHhMMm

T if Text format
H if Hidden format

prefix The label prefix:

" if the cell contains a left-aligned label

" if the cell contains a right-aligned label

A if the cell contains a centered label

\if the cell contains a repeating label

1 if the cell contains a nonprinting label

Blank (no symbol) if the cell is empty or contains a value

(continued)

22 @Functions and Macros Guide

Attribute Result
protect The protection status:

1 if the cell is protected (default)
0 if the cell is unprotected (by /Range Unprotect)

row The row number, from 1 through 8192
type The type of data in the cell:

b if the cell is blank (that is, has no entry)
v if the cell contains a numeric value or a formula
| if the cell contains a label

width The column width

range is the address or name of a range, or a formula that returns the address or name
of a range.

Uses

@CELL is useful in macros and in combination with @IF. Use @ CELL to check

input during a macro to guard against certain types of entries, and to run subroutines
based on a user’s entry. @CELL can also allow an automated application or template
to change cell attributes based on a user’s entries.

Notes

@CELL returns the named attribute in the upper left corner of range. Because the cell
is not recalculated by some commands, recalculate with {CALC} before you use
@CELL to be sure the results are correct.

Example

The following example uses @ CELL with @IF and @ERR to return an error (ERR) if
the user does not type a value in the cell named AMOUNT, and to return the
contents of AMOUNT (a value) if the user types a value.

@IF(@CELL(“type”, AMOUNT)="v”",AMOUNT,@ERR)

@CELLPOINTER

@CELLPOINTER(attribute) returns information about the current cell. The
information depends on the attribute you specify.

Argument

attribute can be any of the 10 attribute arguments for @ CELL, enclosed in double
quotation marks, or a cell that contains one of the items. For a list of attribute
arguments, see the table for @ CELL beginning on page 22.

@Function Descriptions 23

Uses

@CELLPOINTER is useful in macros and in combination with @IF. Use
@CELLPOINTER to find the cell pointer’s current location or to evaluate a formula
based on the contents of the current cell. You can then direct processing depending
on the cell’s contents or type.

Notes

1-2-3 automatically updates @ CELLPOINTER only when you make an entry. To
make @CELLPOINTER return information about the current cell, if you have simply
moved the cell pointer to it, you must recalculate the worksheet.

Example
The following excerpt from a macro uses @CELLPOINTER to test the current cell in a
list of items. If 1-2-3 encounters a blank cell, it beeps and branches to a subroutine.

{IF @ CELLPOINTER(“type”)="b” {BEEP{BRANCH STEP2}

@CHAR

@CHAR(x) returns the Lotus International Character Set (LICS) code character that
corresponds to the number x. For information on LICS, see Appendix A in the User’s
Guide.

Argument

x is an integer, the address or name of a cell that contains an integer, or a formula that
returns an integer. Values that do not correspond to character codes return ERR. If x
is not an integer, @CHAR truncates it to an integer.

Uses

@CHAR is useful for entering foreign language characters and mathematical
symbols. Whether a character prints depends on the capabilities of your printer.

Notes

If your monitor cannot display the character that corresponds to x, 1-2-3 displays a
character that resembles the desired character when possible. If no character
approximates the character, 1-2-3 displays nothing. Make sure your printer can print
the characters you enter.

Examples
@CHAR(163) = £ (British pound sign).
@CHAR(D9) = A, if cell D9 contains the value 65.

24 @Functions and Macros Guide

@CHOOSE

@CHOOSE(x,list) returns the xth value or label from list.

Arguments

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value. x represents an offset number. An offset number is any positive
number, starting with 0, that corresponds to an item’s position in list. The first item
has the offset number 0, the second item has the offset number 1, and so on.

list is a group of values and labels, or the addresses or names of cells that contain
values and labels, separated by argument separators. 1-2-3 numbers each entry in
list, and then chooses the entry that corresponds to the value of x.

Uses

Use @CHOOSE to enter a list of values to use in formulas without setting up a
lookup table.

Notes

x cannot be greater than the number of entries in list, minus 1. If x is a blank cell,
@CHOOSE treats it as the value 0 and returns the first item in list, because 0 is the
offset number for the first item.

Example
@CHOOQOSE(Q,“zero”,“one”,“two”,“three”) = two.

Similar @functions

@HLOOKUP and @VLOOKUP choose values from lookup tables. @ NDEX
produces a value from a table using relative locations.

@CLEAN

@CLEAN(string) removes the following control characters from string:
e Control characters with ASCII codes below 32

* The begin attribute character (LICS code 151), as well as the attribute
character itself

¢ The end attribute character (LICS code 152)
¢ The merge character (LICS code 155) and the character following

@Function Descriptions 25

Argument

string is text (enclosed in double quotation marks), the address or name of a cell that
contains text, or a formula or @function that results in text.

Uses

Use @CLEAN to remove Wysiwyg control codes from cells before you print in 1-2-3.
For example, if a cell uses a Wysiwyg format to show a customer’s first and last name
in different colors, you can use @ CLEAN to remove the control codes so your printed
worksheet does not show the control codes and the label in the cell.

Notes
If string refers to a blank cell or a value, @ CLEAN returns ERR.

Example

You imported data into 1-2-3 from a word processing program. Cell A45 contains the
label.

—Second, we must act soon.«

@CLEAN(A45) = Second, we must act soon.

@CODE

@CODE(string) returns the Lotus International Character Set (LICS) code that
corresponds to the first character in string. For information on LICS, see Appendix A
in the User’s Guide.

Argument
string is text (enclosed in double quotation marks), the address or name of a cell
that contains text, or a formula or @function that results in text.

Uses
Use @CODE when you need to know the LICS code number for a character.

Notes
If string refers to a blank cell or a value, @ CODE returns ERR.

Examples
@CODE(”A”) = 65.

@CODE(C5) = 77, if C5 contains the label Ms. Jones, because 77 is the LICS code
for M.

26 @Functions and Macros Guide

@COLS

@COLS(range) counts the number of columns in range.

Argument

range is a range address or name.

Uses

Use @COLS to determine the number of columns in a range so that you can perform
other tasks based on the size of the range. For example, if you use a macro to print a
range, you can determine the size of the range before you print it. In a macro that
performs the same task on a series of columns, you can use @COLS to determine
when the macro should stop.

Examples
@COLS(D9..J25) = 7, because range contains columns D through J (seven columns).

@COLS(SCORES) = 2, if SCORES is the name of the range B3..C45.

@COS

@COS(2) calculates the cosine of an angle expressed in radians. The result of @COS
is a value from -1 through 1.

Argument

z is any value, in radians, the address or name of a cell that contains a value, or a
formula that returns a value from -1.35'° through 1.351°.

Uses

Use @COS to find the length of the adjacent side in a right triangle, when you know
the length of the hypotenuse and the size of the angle between the hypotenuse and
the side adjacent to the angle. You can also use @COS to find the length of the
hypotenuse, when you know the length of the side adjacent to the angle.

Use @COS to find the secant, or reciprocal of @COS, with the following formula:
1/@COS(z).

Notes

You must enter the angle z in radians. To convert from degrees to radians, multiply
degrees by @P1/180.

Example

In the following right triangle, you calculate the cosine of angle z (30°) to find the
length of side x.

@Function Descriptions 27

You must convert 30° to radians to calculate the cosine:
@COS(30*@P1/180).

2 /o The cosine is 0.866. Since cosine = adjacent/hypotenuse, to find
& the length of side x, use the formula adjacent = cosine *
S hypotenuse: 0.866*2.

z=30° The result is 1.732, which is the length of side x.

adjacent

opposite

X

@COUNT

@COUNT(list) counts the number of cells in a list of cells or ranges.

Argument

list is a series of cell addresses or ranges that contain entries, separated by argument
separators.

Uses

Use @COUNT to count the number of entries in a range. Since @ COUNT also counts
labels (or text), if you want to keep an accurate count of values in a range, make sure
the range does not contain any text.

@COUNT is also useful to stop (or divert) a macro that performs a task on a series of
ranges when the cell pointer reaches a range that has no entries.

Notes

@COUNT counts every cell in list that contains an entry of any kind, including a
label, a label-prefix character, or the values ERR and NA. @COUNT does not count
blank cells if they occur in a range; however, @COUNT counts blank cells if you refer
to them by single-cell addresses in list.

If list includes an undefined range name, @ COUNT changes the range name in the
formula to ERR and counts it as 1.

Examples

@COUNT(A2..A3,A5) = 1, if A2..A3 is blank and whether or not A5 is blank, because
A5 is a single-cell address.

{IF @ COUNT(SEPTEMBER)=01{BRANCH YTD} branches to a macro called YID
(which may calculate year-to-date totals) if the multiple-cell range named
SEPTEMBER is blank.

Similar @functions

@DCOUNT counts the number of nonblank cells in a range that meet criteria you
specify.

28 @Functions and Macros Guide

@CTERM

@CTERM(interest future-value,present-value) calculates the number of compounding
periods it takes for an investment (present-value) to grow to a future-value, earning a
fixed interest rate per compounding period.

Arguments

interest is a value for the periodic interest rate expressed as a decimal or percentage
(.1 or 10%), the address or name of a cell that contains a value, or a formula that
returns a value.

future-value and present-value are values, the addresses or names of cells that contain
values, or formulas that return values. Both arguments must be either positive or
negative.

Uses

Use @CTERM to determine how long it will take a single investment of a given
amount to grow to another given amount at a specified interest rate.

Notes
@CTERM uses the following formula to calculate the compounding period:
where: fv = future value
M pv = present value
In(1 + int) int = interest rate

In = natural logarithm

If the annual interest rate is 10% compounded monthly (as in the example below),
enter .10/12 (the interest divided by the number of compounding periods).

Example

You just deposited $10,000 in an account that pays an annual interest rate of 10%

(.10), compounded monthly. To determine how many years it will take to double
your investment, you enter @ CTERM(.10/12,20000,10000)/12. 1-2-3 returns 6.960312;
it will take about seven years to double the original investment of $10,000.

Similar @functions

@TERM determines the number of periods it will take to reach a desired future value
when equal periodic payments are made at a specified interest rate.

@Function Descriptions 29

@DATE

@DATE(year,month,day) calculates the date number for the specified year, month, and
day.

Arguments
year is an integer, the address or name of a cell that contains an integer, or a formula
that returns a value from 0 (the year 1900) through 199 (the year 2099).

month is an integer, the address or name of a cell that contains an integer, or a formula
that returns a value from 1 through 12.

day is an integer, the address or name of a cell that contains an integer, or a formula
that returns a value from 1 through 31. The value you use for day must be a valid day
for the month. For example, you cannot use 31 as the day if you use 4 (April) as the
month.

If year, month, or day is not a value, @DATE returns ERR.

Uses

Use @DATE to create date entries to use in calculations. Dates you enter with
@DATE (or with @DATEVALUE) are the only dates you can use in operations that
depend on chronological order, such as sorting by date, or using search criteria to
search for dates within a range.

Notes

Even though February 29, 1900 did not exist (it was not a leap year), 1-2-3 assigns a
date number to this “day.” This does not invalidate any of your date calculations,
unless you use dates from January 1, 1900 through March 1, 1900. If you are using
dates within that period with dates after March 1, 1900, subtract 1 from the result.

@DATE calculates the date number based on the number of days from January 1,
1900, through December 31, 2099. For example, January 1, 1900, corresponds to date
number 1; January 2, 1900, corresponds to date number 2, and so on.

If you want the results of an @DATE calculation to appear as an actual date, format
the cell that contains the @DATE function using /Range Format Date.

You can specify the format of year, month, and day with /Worksheet Global Default
Other International Date.

Examples
@DATE(87,5,23) = 31920, or 23-May-87 in a cell formatted as DD-MMM-YY.

@DATE(199,4,1) = 72776, or 01-Apr-2099 in a cell formatted as DD-MMM-YY.

30 @Functions and Macros Guide

@DATEVALUE

@DATEVALUE(string) calculates the date number for the date specified in string.

Argument

string is a label, a text formula, or the address or name of a cell that contains a label or
text formula. The label or the result of the text formula must be in one of the five
1-2-3 date formats.

Uses

@DATEVALUE is useful with data imported from another program, such as a word
processing program. You can also use @DATEVALUE to convert dates entered as
labels to date numbers so that you can use the dates in calculations.

Notes

If you want the results of an @DATEVALUE calculation to appear as an actual date,
format the cell that contains the @DATEVALUE function using /Range Format Date.

If you use the Date 3 format, for example @DATEVALUE(“Nov-91”), 1-2-3 returns
the value for the first day of the month.

You can specify the format to use for string with /Worksheet Global Default Other
International Date.

Examples

@DATEVALUE(Birthday) = 22890, if the cell named Birthday contains the date string
1-Sep-62.

@DATEVALUE(“1-Apr-91”) = 33329.
@DATEVALUE(“Apr-91”) = 33329.

@DAVG

@DAVG(input field criteria) finds the average value in a field of a database (or any
range set up like a database) for all values that meet the criteria in the criteria range.

Arguments

input is the address or name of a range that contains a database.
field is the field’s offset number (a positive number or 0), the address of a cell that
contains an offset number, or a formula that returns an offset number. 1-2-3 assigns

the first field (column) in input the offset number 0, the second field the offset
number 1, and so on.

@Function Descriptions 31

criteria is a range of at least two rows. The top row of the criteria range contains
exact duplicates of the input range’s field name(s) for those fields for which you are
specifying criteria. The row(s) below the field name(s) contain one or more criteria,
or conditions, that each entry in the field must meet to be included by @DAVG. (For
more information, see “Writing Criteria” in Chapter 14 of the User’s Guide.)

Uses

Use @DAVG to find the average value of only those items in a list that meet certain
conditions: for example, the average sales for a particular division or the average
score for test-takers from a certain city.

Example

In the following illustration, the input range named SALES (A25..F35) lists house
sales for April and May. Cell G40 shows the result of using @DAVG to determine the
average selling price for a four bedroom house.

G40t (CO) W91 ADAVGCSALES,4,CRIT_RANGE) ~ READY
c 4
25 DDRE! >
26| 0% 467 Brattle & ; A
27| 05-Apr 183 Hillside 3 325 v
28| 10-Apr 64 N.Gate 2 340, ?
29| 14~Apr 80 Mt. Auburn 2),
30| 25-Apr 14 Charles 4 1 SALES
31| 27-Apr 1160 Memorial 1
32| Ob-May 130 Crescent 3
33| 10-May 12 Trenton 2
34 | 11-May 36 Barnes 4 680
gz 22-May 234 Third 2
n { " } CRIT_RANGE

w%wage price paid for a 4-bedroom house, APRIL and MAY: $516,333

Similar @functions

@AVG finds the average value of a range of values.

@DAY

@DAY (date-number) calculates the day of the month (1 through 31) using the value of
date-number.

Argument

date-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value from 1 (January 1, 1900) through 73050 (December 31,
2099).

32 @Functions and Macros Guide

Uses

@DAY is useful when you need to know only the day of the month, and not the entire
date. @DAY can also supply the day argument for other date or time @functions that
build on previously calculated dates (as in the examples below).

Notes

You can use one of the other date or time @functions to supply the value for
date-number.

Examples
@DAY(@NOW) = the current day of the month.

@DAY(D9) = 25, if cell D9 contains the date number 20723 (the date 25-Sep-56).

@DAY(@DATEVALUE(BIRTHDAY)) = 1, if cell BIRTHDAY contains the date number
33329 (the date 1-Apr-91).

@DCOUNT

@DCOUNT (input field criteria) counts the nonblank cells in a field of a database table
that meet the criteria in the criteria range.

Arguments

input is the address or name of a range that contains a database.

field is the field’s offset number (a positive integer or 0), the address of a cell that
contains an offset number, or a formula that returns an offset number. 1-2-3 assigns
the first field (column) in input the offset number 0, the second field the offset
number 1, and so on.

criteria is a range of at least two rows. The top row of the criteria range contains
exact duplicates of the input range’s field name(s) for those fields for which you are
specifying criteria. The row(s) below the field name(s) contain one or more criteria,
or conditions, that each entry in the field must meet to be included by @DCOUNT.
(For more information, see “Writing Criteria” in Chapter 14 of the User’s Guide.)

Uses

Use @DCOUNT to count the number of records in a database that meet specified
criteria: for example, the number of checks written in a certain month.

Example

In the following illustration, the input range named SALES (A25..F35) lists house
sales for April and May. Cell F40 uses @DCOUNT to count the number of houses
sold by broker J. Compton during April and May.

@Function Descriptions 33

F40: () [W61 BDCOUNT(SALES,5,C37..C38) i READY

{DDRESS
467 Brattle
183 Hillside
64 N. Gate
80 Mt. Auburn
14 Charles

SALES

NENU=FRNNWS o

39
%8 Number of houses sold by JCompton, APRIL and MAY: 4
41

Similar @functions
@COUNT counts the nonblank cells in a range.

@DDB

@DDB(cost salvage life period) calculates the depreciation allowance of an asset with an
initial value of cost, an expected useful life, and a final salvage value for a specified
period of time, using the double-declining balance method.

Arguments

cost is the amount paid for the asset, and must be a value greater than or equal to
salvage.

salvage is the estimated value of the asset at the end of its useful life, and can be any
value.

life is the number of periods the asset takes to depreciate to its salvage value, and
must be a value greater or equal to period.

period is the time period for which you want to find the depreciation allowance, and
must be a value greater than or equal to 1.

cost, salvage, life, and period are all values, the addresses or names of cells that contain
values, or formulas that return values.

Uses

@DDB uses the double-declining balance method of depreciation. The
double-declining balance method accelerates the rate of depreciation so that more
depreciation expense occurs (and can be written off) in earlier periods than in later
ones. Depreciation stops when the book value of the asset — that is, the total cost
of the asset minus its total depreciation over all prior periods — reaches the salvage
value.

34 @Functions and Macros Guide

Notes

@DDB uses the following formula to calculate the double-declining balance
depreciation for any period:

(bv*2) where: bv = book value in that period
n n = life of the asset
Example

You purchased an office machine for $10,000. The useful life of this machine is eight
years, and the salvage value after eight years is $1200. To calculate the depreciation
expense for the fifth year using the double-declining balance method, you enter
@DDB(10000,1200,8,5). 1-2-3 returns $791.02, the depreciation expense for the fifth
year of the asset’s life.

Similar @functions

@SLN calculates depreciation using the straight-line method, and @SYD uses the
sum-of-the-years’-digits method.

F40: (CO) CW101 SDMINCSALES,4,CRIT_RANGE) READY
A B c G P
% |Boer 4 brettle & e S eton A
ttle ' -
27 |05-Apr 183 Hillside 3 325, 318,000 CGroden v
28 [10-Apr 64 N. Gate 2 340,000 332,000 AMiller ?
29 [14-Apr 80 Mt. Auburn 2 278,000 JCompton
30 14 Charles 4 179,000 160,000 AMitler | — ___ GAIES
31 |27-Apr 1160 Memorial 1 230,000 227,000 AMiller
32 |O4-May 130 Crescent 3 405,000 397,000 CGroden
33 [10May 12 Trenton 2 310,000 303,000 AMiller
34 [11-May 36 4 680,000 669,000 JCompton
gz 22-May 234 Third 2 155,000 140,000 JCompton
x [“5} CRIT_RANGE

?'iéglmest price for a 2-bedroom house, APRIL and MAY: $140,000

@DMAX

@DMAX(input field criteria) finds the greatest value in a field of a database that meets
the criteria in the criteria range.

Arguments

input is the address or name of a range that contains a database.
field is the field’s offset number (a positive integer or 0), the address of a cell that
contains an offset number, or a formula that returns an offset number. 1-2-3 assigns

the first field (column) in input the offset number 0, the second field the offset
number 1, and so on.

@Function Descriptions 35

criteria is a range of at least two rows. The top row of the criteria range contains
exact duplicates of the input range’s field name(s) for those fields for which you are
specifying criteria. The row(s) below the field name(s) contain one or more criteria,
or conditions, that each entry in the field must meet to be included by @>DMAX.
(For more information, see “Writing Criteria” in Chapter 14 of the User’s Guide.)

Uses

Use @DMAX to find the highest value of only those items that meet certain
conditions: the month with the highest sales for a particular product, for example.
You can also use @DMAX to find the most recent date or time in a list of dates or
times.

@DMAX is also useful when you need to check for unusually large values or to find
(and discard) the largest value in some statistical calculations.

Example

In the following illustration, the input range named SALES (A25..G35) lists house
sales for April and May. Cell G40 shows the result of using @DMAX to find the
highest sale price of a two bedroom house.

G40: (CO) [W10] GDMAX(SALES, 4, CRIT_RANGE) i READY

A B c <4
25 ADDR BR >
26 467 Brattle 4 -
27 183 Hillside 3 y
28 64 N. Gate 2 0 |7
29 80 Mt. Auburn 2 2
30 [25-Apr 14 Charles 4 400 SALES
3 ~Apr 1160 Memorial 1
32 |04 130 Crescent 3
33 12 Trenton 2
34 36 Barnes 4
35 234 Third 2 ; i
A l fz b : : CRIT_RANGE
39
Li;lwmy\est price paid for a 2-bedroom house, APRIL and MAY: $332,000

Similar @functions
@MAX finds the greatest value in a range.

@DMIN

@DMIN (input field criteria) finds the least value in a field of a database that meets the
criteria in the criteria range.

Arguments

input is the address or name of a range that contains a database.

36 @Functions and Macros Guide

field is the field’s offset number (a positive integer or 0), the address of a cell that
contains an offset number, or a formula that returns an offset number. 1-2-3 assigns
the first field (column) in input the offset number 0, the second field the offset
number 1, and so on.

criteria is a range of at least two rows. The top row of the criteria range contains
exact duplicates of the input range’s field name(s) for those fields for which you are
specifying criteria. The row(s) below the field name(s) contain one or more criteria,
or conditions, that each entry in the field must meet to be included by @DMIN.
(For more information, see “Writing Criteria” in Chapter 14 of the User’s Guide.)

Uses

Use @DMIN to find the lowest value of only those items that meet certain conditions:
the month with the lowest sales for a particular product, for example. You can also
use @DMIN to find the earliest date or time in a list of dates or times.

@DMIN is also useful when you need to check for unusually small values, or to find
(and discard) the smallest value in some statistical calculations.

Example

In the following illustration, the input range named SALES (A25..F35) lists house
sales for April and May. Cell F40 shows the result of using @DMIN to find the lowest
sale price of a two bedroom house.

Similar @functions
@MIN finds the least value in a range.

@DSTD

@DSTD(input field criteria) calculates the standard deviation of the values in a field of
a database that meet the criteria in the criteria range.

Arguments

input is the address or name of a range that contains a database.

field is the field’s offset number (a positive integer or 0), the address of a cell that
contains an offset number, or a formula that returns an offset number. 1-2-3 assigns
the first field (column) in input the offset number 0, the second field the offset
number 1, and so on.

criteria is a range of at least two rows. The top row of the criteria range contains
exact duplicates of the input range’s field name(s) for those fields for which you are
specifying criteria. The row(s) below the field name(s) contain one or more criteria,
or conditions, that each entry in the field must meet to be included by @DSTD.

(For more information, see “Writing Criteria” in Chapter 14 of the User’s Guide.)

@Function Descriptions 37

Uses

Standard deviation measures the degree to which individual values in a list vary
from the mean (average) of all values in the list. The lower the standard deviation,
the less individual values vary from the mean, and the more reliable the mean. A
standard deviation of 0 indicates that all values in the list are equal.

Use @DSTD to find the standard deviation of values in a field in a database that meet
criteria you specify (when those values are the entire population), such as the
standard deviation of all sales within a particular sales group, or the standard
deviation of all salaries for a certain job level.

@DSTD produces the most accurate results when the population is large.

Notes

@DSTD uses the n, or population, method to calculate the standard deviation of
population data. The n method assumes that the selected values are the entire
population. If the values are only a sample of the population, the standard deviation
is biased because of errors introduced in taking a sample. The n method uses the
following formula:

P where: n = number of values in field
\/ M v; = theith value in field
n avg = average of values in field

Standard deviation is the square root of the variance of all individual values from
the mean.

Example

In the following illustration, the input range named SALES (A25..G35) lists house
sales for April and May. Cell F40 shows the result of using @DSTD to calculate the
standard deviation of property taxes for lot sizes greater than .25 acres.

F4D: (C2) GDSTD(SALES,S,F37..F38) READY

A [D E G H 4
25 D BATHS AGE >
26| 12 Bartholomew Sq. 4 2 48 -~
27| 46 Prospect Place 3 1 22 b
28 2 30 21 o
£ 2 G+ SALES
32 3 1 23
33 2 2 21
34 4 1 35
35 2 3 60
36
37
38 e = : >.25
39 Standard deviation of property TAX for
W with LOT size greater than .25: $736.09

38 @Functions and Macros Guide

Similar @functions

@STD calculates the standard deviation of the entire population of values in a range.
@DVAR calculates the population variance of values that meet the criteria you
specify.

@DSUM

@DSUM(input field criteria) calculates the sum of the values in a field of a database
that meet the criteria in the criteria range.

Arguments

input is the address or name of a range that contains a database.

field is the field’s offset number (a positive integer or 0), the address of a cell that
contains an offset number, or a formula that returns an offset number. 1-2-3 assigns
the first field (column) in input the offset number 0, the second field the offset
number 1, and so on.

criteria is a range of at least two rows. The top row of the criteria range contains
exact duplicates of the input range’s field name(s) for those fields for which you are
specifying criteria. The row(s) below the field name(s) contain one or more criteria,
or conditions, that each entry in the field must meet to be included by @DSUM.
(For more information, see “Writing Criteria” in Chapter 14 of the User’s Guide.)

Uses

Use @DSUM to find the total of values that meet conditions you specify, such as total
sales for a particular month, or total number of goals scored by a soccer team against
a particular team over a season.

Example

In the following illustration, the input range named SALES (A25..G35) lists house
sales for April and May. Cell F40 shows the result of using @DSUM to calculate the
total commission earned by broker A. Miller.

@Function Descriptions 39

FA0: (CD) EVID] SOSURCSALES, 6, CRIT_RANGE) s Ry

25

26 4

27 3

28 2

5 ;

30

31 1 SALES
32 3

33 2

3% 4

35 2

gg SRS e L R AT e L R R

38 2 . g CRIT_RANGE

39
W'{aﬁnt commission paid to AMitler, APRIL and MAY: $40,880
4

Similar @functions
@SUM calculates the sum of the values in a range.

@DVAR

@DVAR(input field criteria) calculates the population variance of the values in a field
of a database that meet the criteria in the criteria range.

Arguments
input is the address or name of a range that contains a database.

field is the field’s offset number (a positive integer or 0), the address of a cell that
contains an offset number, or a formula that returns an offset number. 1-2-3 assigns
the first field (column) in input the offset number 0, the second field the offset
number 1, and so on.

criteria is a range of at least two rows. The top row of the criteria range contains
exact duplicates of the input range’s field name(s) for those fields for which you are
specifying criteria. The row(s) below the field name(s) contain one or more criteria,
or conditions, that each entry in the field must meet to be included by @DVAR.
(For more information, see “Writing Criteria” in Chapter 14 of the User’s Guide.)

Uses

Variance measures the degree to which individual values in a list vary from the mean
(average) of all the values in the list. The lower the variance, the less individual
values vary from the mean, and the more reliable the mean. A variance of 0 indicates
that all values in the list are equal. Variance is necessary in several ANOVA (analysis
of variance) statistical tests.

40 @Functions and Macros Guide

Use @DVAR to calculate the variance within a group of values in a field in a database
that meet criteria you specify (when those values are the entire population), such as
the variance of all sales within a particular division, or the variance of salaries for a
job level.

@DVAR produces the most accurate results when the population is large.

Notes

@DVAR uses the n, or population, method to calculate variance. The n method
assumes that the selected values are the entire population. If the values are only a
sample of the population, the variance is biased because of errors introduced in
taking a sample. The n method uses the following formula:

EPRRY where: n = number of values in field
Z (—avg’ o = theith value in field
n-1 avg = average of values in field

Variance is the square of standard deviation.

Example

In the following illustration, the input range named SALES (A25..F35) lists house
sales for April and May. Cell E40 shows the result of using @DVAR to calculate the
variance of lot size for houses costing more than $100,000.

. EDIT

~N p?A -

SALES

CRIT_RANGE

Similar @functions

@VAR calculates the population variance of values in a range. @DSTD calculates the
population standard deviation of values that meet the criteria you specify.

@Function Descriptions 41

@ERR

@ERR produces the value ERR.

Uses

@ERR is useful in flagging errors in calculations. It is seldom used by itself. For
example, @ERR used as an argument with @IF produces the value ERR when certain
conditions exist, such as when a formula results in an unacceptable value (for
example, a negative monthly payment).

Notes

ERR is a special value that either 1-2-3 generates to indicate an error in a formula, or
you generate with @ERR. ERR will ripple through formulas: a formula that refers to
a cell that contains ERR results in ERR, no matter how the value ERR is generated,
and any other formula that depends on that formula also results in ERR. When you
correct the formula that contains ERR, the results of dependent formulas also become
correct.

The label ERR and the value ERR are not equivalent in formulas. For example, the
formula +A2+34 = ERR if cell A2 contains @ERR, but equals 34 if cell A2 contains the
label ERR.

Example
@IF(B14>3,@ERR,B14) = ERR, if the value in cell B14 is greater than 3.

@EXACT

@EXACT(stringl string2) compares two sets of characters. If the two sets match
exactly, @EXACT returns 1 (true); if the two sets are not exactly the same, @EXACT
returns 0 (false).

Arguments

stringT and string? are text, text formulas, or the addresses or names of cells that
contain labels or text formulas.

Uses

Use @EXACT when you need to ensure that a set of characters exactly matches a
required entry, such as in macros that compare what a user enters with a required
entry before continuing. This allows you to set passwords for macros.

@EXACT is also useful for checking existing entries, as in a database in which you
need to ensure that all entries in a field contain the same set of characters.

42 @Functions and Macros Guide

Notes

@EXACT is more precise than = (the equal operator) in a formula. Unlike =,
@EXACT distinguishes between uppercase and lowercase letters and between letters
with and without accent marks.

Examples
@EXACT(“ATHENS”,” Athens”) = 0 (false).

@EXACT(“Overdue”,B2) =1 (true), if cell B2 contains the label Overdue.
@EXACT(”400”,400) = ERR, because string? is not a string.

@IF(@CELL(“type”,B1)="L"#AND#@CELL(“type”,C1)="L",@EXACT(B1,C1),0)
returns 0 (zero) if B1 or C1 is not a string. You can include the 0 (zero) in another
formula or as part of a macro dependency that determines the next commands 1-2-3
performs.

@EXACT(“E”,”e”) = 0 (false) because @EXACT is case-sensitive.

@EXP

@EXP(x) calculates the value of the constant e (approximately 2.718282) raised to the
power x.

Argument

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value less than or equal to 709.

Uses
Use @EXP in scientific calculations that require exponential functions.

Notes

If x is greater than 709, the calculation is too large for 1-2-3 to store, and @EXP returns
ERR. If x is greater than 230, 1-2-3 can calculate and store the value of @EXP, but
cannot display it (the cell displays a row of asterisks). 1-2-3 cannot display a value
greater than 9.9E99.

Examples
@EXP(-1.25) = 0.286504.

@EXP(B1) = 162754.7, if cell B1 contains the value 12.

@Function Descriptions 43

@FALSE

@FALSE returns the logical value 0 (false).

Uses

Use @FALSE with @functions such as @IF and @ CHOOSE that require a logical value
of 0 (false). @FALSE is useful as the y argument for @IF, which is the value returned
if the condition is not met.

Notes

If a logical statement such as Al = Bl is true, its logical value is 1. If it is false, its
logical value is 0.

Example
@IF(A6>500,@TRUE,@FALSE) = 0 if A6 contains a value less than or equal to 500.

@FIND

@FIND(search-string string start-number) calculates the position in string at which
1-2-3 finds the first occurrence of search-string. @FIND begins searching string at the
position indicated by start-number, which represents the offset number of a character
in string.

Arguments

search-string and string are text, text formulas, or the addresses or names of cells that
contain text or text formulas.

start-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value. start-number must be a positive value or 0.

Uses

Use @FIND when you need to determine the position of a particular character or
group of characters within a group. @FIND is useful in macros that locate particular
sequences of characters for processing.

@FIND is also useful when combined with @MID or @REPLACE to locate and
extract or replace text.

Notes

If 1-2-3 does not find search-string in string, @FIND returns ERR. @FIND also returns
ERR if start-number is greater than the number of characters in string, or if
start-number is negative.

44 @Functions and Macros Guide

@FIND is case-sensitive and accent-sensitive; for example, @FIND will not find the
search-string “e” in @FIND(“e”,B1,0) = ERR if B1 contains the string CAMBRIDGE.

Examples

@FIND(“P”,”Accounts Payable”,0) = 9 because search-string P is at position 9 in string
Accounts Payable.

@FIND(“e” @PROPER(B1),0) = 8, if cell B1 contains the string CAMBRIDGE.

@FV

@FV (payments,interest term) calculates the future value of an investment, based on a
series of equal payments, earning a periodic interest rate, over the number of payment
periods in term.

Arguments

payments is a value, the address or name of a cell that contains a value, or a formula
that returns a value.

interest is a value, the address or name of a cell that contains a value, or a formula
that returns a value. interest must be a decimal or percentage value.

term is a value, the address or name of a cell that contains a value, or a formula that
returns a value.

Uses

Use @FV to determine whether an investment will produce the results you want at
the end of term.

Notes

@FV assumes the investment you are calculating is an ordinary annuity: an
investment in which equal payments are made at the end of each period in the term.

@FV uses the following formula to calculate future value:

v where: pmt = periodic payment
t* 1+ l,nt) L int = periodic interest rate
int n = number of periods

If you make each year’s contribution on the first day of the year, you would calculate
the amount for an annuity due. To calculate the future value of an annuity due, use
the formula @FV (payments,interest,term)*(1+interest).

For example, @FV(2000,0.075,20)*(1+0.075) = $93,105, the value of your account in 20
years if you make each deposit on the first day of each year.

@Function Descriptions 45

Example

You plan to deposit $2,000 each year for the next 20 years into an account to save for
retirement. The account pays 7.5% interest, compounded annually; interest is paid
on the last day of each year. You make each year’s contribution on the last day of the
year. To calculate the value of your account in 20 years, you enter
@FV(2000,0.075,20). 1-2-3 returns the value $86,609.

Similar @functions

@PV determines the present vaiue of an investment. @NPV computes the net present
value of an investment, discounting the future value to present value.

@HLOOKUP

@HLOOKUP (x,range,row-offset) returns the contents of a cell in a specified row of a
horizontal lookup table.

Arguments

x is a value or text, the address or name of a cell that contains a value or text, or a
formula that returns a value or text. If x is a value that is less than the first value in
range, @HLOOKUP returns ERR. If x is greater than the last value in range,
@HLOOKUP stops at the last cell in the row and returns the row number of the
greatest value. If x is text, it must be an exact match of the text in range.

range is the range address or range name of the range that contains the table,
including the first row. When 1-2-3 locates a cell in the index row (the first row in
range) that contains the value x (or the value closest to, but not greater than, x), it
moves down that column the number of rows specified by row-offset and returns the
contents of the cell as the answer.

row-offset is a value, the address or name of a cell that contains a value, or a formula
that returns a value from 0 through 8,191. row-offset represents an offset number. An
offset number corresponds to the position the row occupies in range. The top row has
an offset number of 0, the second row has an offset number of 1, and so on.

Uses

Use @HLOOKUP to choose items from a table or to automate data selection for
formulas or in macros.

@HLOOKUP is useful for finding entries in tables that contain many different choices
that depend on different variables, for example, tax tables or sales commission tables.

Using @HLOOKUP to provide data for calculations in macros and other applications
helps to ensure that the data is correct and that it is entered correctly, as in a macro
that retrieves a product’s price from a lookup table based on what a user enters.

46 @Functions and Macros Guide

Notes

@HLOOKUP is case-sensitive and accent-sensitive; for example, if x is the text Paris,
@HLOOKUP will not match it with a cell that contains PARIS.

Example

The following illustration shows a horizontal lookup table that lists rates for sending
a parcel to several cities. The table range is A2..F7. The simple form in B9..D11 uses
@HLOOKUP to retrieve a rate based on the city entered in D9 and the parcel type
entered in D10.

D11: (C2) [W111 SHLOOKUP(D9,A2..F7,D10) READY
A B c e E F <

1 —PARCEL DESTINATION— >

2 Parcel type London Paris Frankfurt New York Amsterdam -

3 1 $18.36 $19.33 $20.12 $9.25 $20.25 v

4 2 $20.32 $21.66 $22.03 $11.25 $22.25 ?

5 3 $22.44 $23.88 $24.00 $13.25 $24.25

6 4 $24.14 $25.16 $25.75 $16.85 $26.00

7 5 $28.32 $29.00 $29.50 $19.54 $29.90

8

9 Parcel destination Frankfurt

10 Parcel type 3

1. Cost $24.00

Similar @functions

@VLOOKUP looks up a value in a vertical lookup table. @INDEX looks up a value
when you specify offset numbers for both the row and the column. @ CHOOSE looks
up values in a single-column lookup table.

@HOUR

@HOUR(time-number) returns the hour, a value from 0 (midnight) through 23 (23:00
or 11:00 PM.), of time-number.

Argument

time-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value from .000000 (midnight) through .999988 (11:59:59 P.M.).
Usually, another time @function supplies time-number.

Uses

Use @HOUR to extract the hour portion of time values created with @NOW, @TIME,
and @TIMEVALUE. The hour portion is useful in calculations that involve whole
hours, such as calculating hourly wages or hours elapsed since you began working
on a project, or time-stamping a worksheet.

@Function Descriptions 47

Examples
@HOUR(.51565) = 12 because .51565 is the time number for 12:22:32 PM.

@HOUR(@TIME(13,45,18)) = 13 (1:00 PM.), because 13 is the hour argument for
@TIME(13,45,18).

@IF

@IF(condition,x,y) evaluates condition and returns one of two values, depending on
the result of the evaluation. If condition is true, @IF returns x; if condition is false, @IF
returns y.

Arguments

condition is a logical formula, or the address or name of a cell that contains a logical
formula.

x and y are values, labels, the addresses or names of cells that contain values or
labels, or formulas that return values or labels.

Uses

Use @IF when calculations or processing depend on the result of a test, for example,
a test to determine savings-account interest at one rate for balances of $1,000.00 and
over and another rate for balances below that amount.

@IF is useful when combined with @ERR and @NA to document errors or missing
data in formulas. It is also useful in preventing ERR, NA, and calculation errors in
situations where data may be missing or inaccurate (for example, to prevent division
by zero, or, with @ISSTRING, to prevent a label from being included in calculations
such as when using @AVG).

Notes

You can nest @IF functions (place one @IF function inside another @IF function) to
create a complex condition.

Examples

@IF(BALANCE>=0,BALANCE,”Overdrawn”) returns the value in the named range
BALANCE when the value in BALANCE is 0 or positive; or returns the label
Overdrawn when the value in BALANCE is negative.

@IF(TOT>10000,TOT*.15,@IF(TOT>5000,TOT*.10,TOT*.02)) returns a commission
rate based on three levels of sales: total sales greater than $10,000, total sales greater
than $5,000, and total sales less than or equal to $5,000.

48 @Functions and Macros Guide

@INDEX

@INDEX(range,column-offset, row-offset) returns the contents of the cell located at the
intersection of a specified column-offset and row-offset of a range.

Arguments

range is a cell address or range name.

column-offset is the offset number of the column that @INDEX uses. 1-2-3 assigns the
first column in range the offset number 0, the second column the offset number 1, and
SO on.

row-offset is the offset number of the row that @INDEX uses. 1-2-3 assigns the first
row in range the offset number 0, the second row the offset number 1, and so on.

column-offset and row-offset are values, the addresses or names of cells that contain
values, or formulas that return values from 0 through 8,191.

Uses

Use @INDEX when you want to use a lookup table but need to use the relative
positions (offset numbers) of the rows or columns, instead of specified values, for
both arguments.

Notes

If any argument is larger than the number of columns or rows in range, or if any
argument is negative, @INDEX returns ERR.

Example

In the following illustration, the table named INCREASE (A3..E8) shows salary
increases based on employee performance ratings. @ NDEX(INCREASE,?2,3) entered
in E10 finds the salary increase for an employee who has a rating of 3 and has a
salary level of 2. @ NDEX(INCREASE,1,2) finds the salary increase for an employee
who has a rating of 2 and a salary level of 1.

p10: (PO) M(m,a,s) READY
A B c PamMEE o« F G H :

1

2 ARY LEVEL— 4

3 3 3 % b4

4 LA 8] *

: g 2 & INCREASE

7 2% 1% o

g - (174 0x OXx

297 AINDEXCINCREASE, 2,3) => 5% Salary 2, rating 3

11 QINDEXCINCREASE,1,2) == 7% Salary 1, rating 2

@Function Descriptions 49

@INT

@INT(x) returns the integer portion of x.

Argument

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value.

Uses

Use @INT in calculations that require only the integer portion of values (for example,
a calculation of staffing levels).

Notes

@INT truncates a value to its integer portion and eliminates the decimal portion. Use
/Range Format Fixed 0 or / Worksheet Global Format Fixed 0 to display values as
integers in the worksheet if you want 1-2-3 to calculate values using their full
precision. @INT does not round to an integer.

@INT differs from @ROUND in that @ROUND can retain the decimal portion of a
value and always rounds the value.

Examples
@INT(35.67) = 35.

@INT(@NOW) = the date number for the current date and time, because the time
portion is a decimal value.

F7-@INT(F7) = .8876, if cell F7 contains the value 14.8876.

@IRR

@IRR(guess,range) calculates the internal rate of return for a series of cash flow values
generated by an investment. The internal rate of return is the percentage rate that
equates the present value of an expected future series of cash flows to the initial
investment.

Arguments

guess is a decimal or percentage value, the address or name of a cell that contains a
decimal or percentage value, or a formula that returns a decimal or percentage value.
guess represents your estimate of the internal rate of return. In most cases, guess
should be a decimal between 0 (0%) and 1 (100%). With very large cash flows, make
guess as accurate as possible.

range is the address or name of a range that contains the cash flows. 1-2-3 considers
negative numbers as cash outflows and positive numbers as cash inflows. Normally,

50 @Functions and Macros Guide

the first cash-flow amount in the range is a negative number (a cash outflow) that
represents the investment. 1-2-3 ignores empty cells in the range, and treats cells that
contain labels as 0.

Uses

Use @IRR to determine the profitability of an investment. Combine @IRR with other
financial functions, such as @NPV, to assess an investment.

Notes
1-2-3 assumes the cash flows are received at regular, equal intervals.

@IRR uses a series of approximations, starting with your guess value, to calculate the
internal rate of return. Start with a guess that you feel is reasonable for the internal
rate of return. More than one solution may be possible, so try another guess if the
result doesn’t seem correct.

If @IRR cannot approximate the result to within 0.0000001 after 30 calculation
iterations, the result is ERR. If your guesses continue to return ERR, use @NPV to
determine a better guess.

Depending on the guess you provide, @IRR can return several different answers.
@IRR can also return several different answers if you specify negative cash flows.

Example

Suppose you want to calculate the internal rate of return of a $10,000 investment (the
value ~10000 entered in cell B3) that is followed by 12 monthly payments of $1500
(B4..B15). Using a guess of 12%, your formula would be @IRR(.12,B3..B15) and 1-2-3
would return 10.45%.

Similar @functions

@NPV calculates the net present value of a series of future cash flows. @PV
computes the present value of an annuity based on a series of equal payments. @FV
calculates the future value of an annuity. @RATE returns the periodic interest rate
necessary for an investment to grow to a future value.

@ISAAF

@ISA AF(name) tests name for an attached add-in @function. If name is an attached
add-in @function, @ISAAF returns 1 (true); if name is not a defined add-in @function,
@ISAAF returns 0 (false).

Argument

name is the name of the add-in @function you want to test. name is a literal string, a
text formula, or a reference to a cell that contains a label. Do not include the initial @
(at sign) in name.

@Function Descriptions 51

Uses

Use @ISAAF in a macro to determine if you need to attach the add-in program
required by an add-in @function.

Notes
@ISAAF does not recalculate when you select /Add-In Attach or /Add-In Detach.

If @ISAAF returns 0 (false) because the add-in program required by the @function is
not attached, you must attach the add-in program and then retrieve the worksheet
again to use the add-in @function.

Example

@ISAAF(“dsum”) = 0 because @DSUM is a built-in 1-2-3 @function, not an add-in
@function.

@ISAPP

@ISAPP(name) tests name for an attached add-in. If name is an attached add-in,
@ISAPP returns 1 (true); if name is not an attached add-in, @ISAPP returns 0 (false).

Argument

name is the name of the add-in you want to test. name is a literal string, a text
formula, or a reference to a cell that contains a label. Do not include the . ADN
extension in name.

Uses

Use @ISAPP in a macro to determine if the add-in program you want to use is
attached.

Notes

@ISAPP returns 1 (true) only for add-ins you invoke using /Add-In Invoke. For
add-ins that only define add-in @functions, or any add-in installed in your driver
set, @ISAPP returns 0 (false). Use @ISAAF to test for add-in @functions.

@ISAPP does not recalculate when you select /Add-In Attach or /Add-In Detach.

Example
@ISAPP(“wysiwyg”) = 1 if the Wysiwyg add-in is currently attached.

52 @Functions and Macros Guide

@ISERR

@ISERR(x) tests x for the value ERR. If x is the value ERR, @ISERR returns 1 (true);
if x is not the value ERR, @ISERR returns 0 (false).

Argument

x can be any value, single-cell location, text, or condition.

Uses

Using @ISERR with @IF in formulas stops the ripple-through effect of the value ERR.
For example, @ F(@ISERR(C3),0,C3) returns 0 if cell C3 contains the value ERR. The
formula returns the contents of cell C3 if cell C3 contains any other value.

Use @ISERR to block errors that arise from division by zero. For example, the
formula @IF(@ISERR(A1/A2),0,A1/A?2) tests the result of the division A1/A2. If the
result is the value ERR, the formula returns 0. If the result is any other value, the
formula returns that result.

Notes

ERR is a value 1-2-3 returns when an error occurs, or you generate with @ERR. The
value ERR is not equivalent to the label ERR. @ISERR does not recognize the label
ERR.

@ISNA

@ISNA(x) tests x for the value NA. If x is the value NA, @ISNA returns 1 (true); if x
is not the value NA, @ISNA returns 0 (false).

Argument

x can be any value, single-cell location, text, or condition.

Uses

Using @ISNA in formulas stops the ripple-through effect of the value NA. For
example, @IF(@ISNA(C3),0,C3) returns 0 if cell C3 contains the value NA; the
formula returns the contents of cell C3 if cell C3 contains any other value.

Notes

The value NA is not equivalent to the label NA. @ISNA does not recognize the label
NA. The value NA in a cell generates NA in all formulas that refer to that cell.

@Function Descriptions 53

Example

The following subroutine QTY_IN tests whether the entry in QTY is a value; if it is,
processing transfers to the subroutine PRICE_IN. If QTY does not contain a value,
QTY_IN requests a new entry.

PRICE_IN uses @ISNA to determine whether or not a discount applies. If @ISNA is
true, the macro calculates the discount. If DISCOUNT does not contain NA and QTY
does not contain ERR, the subroutine multiplies the values in the two cells and enters
the result in the cell named TOTAL.

QTY_IN {GETNUMBER “Enter quantity: ”,QTY}~
{IF @ISERR(QTY){BRANCH QTY_IN}

PRICE_IN {GETNUMBER “Enter price: ”,PRICE}~
{IF @ISERR(PRICE){LET PRICE,”No price entered”}~
{GOTOJTOTAL~

{IF @ SNUMBER(PRICE)<>1{BRANCH TOTAL_IN}
{IF @ISNA(DISCOUNT)}{BRANCH NODISCOUNT}
+QTY*(PRICE*DISCOUNT)~{QUIT}

NODISCOUNT +QTY*PRICE~{QUIT}
TOTAL_IN {LET TOTAL,PRICE}~

@ISNUMBER

@ISNUMBER (%) tests x to see if it contains a value. If x is a value, NA, ERR, or blank,
@ISNUMBER returns 1 (true). If x is a string, a range, @ISNUMBER returns 0 (false).

Argument

x can be any value, single-cell location, text, or condition.

Uses

@ISNUMBER is useful in macros to make sure a user enters the correct type of
information (values or labels).

Use @ISNUMBER in formulas to avoid the values ERR and NA.

Example

The following subroutine QTY_IN tests whether the entry in QTY is a value; if it is,
processing transfers to the subroutine PRICE_IN. If QTY does not contain a value,
QTY_IN requests a new entry.

PRICE_IN uses @ SNUMBER to determine whether or not the value entered in
PRICE is a number. If PRICE does not contain a number, the macro transfers to the
subroutine TOTAL_IN.

54 @Functions and Macros Guide

QTY_IN {GETNUMBER “Enter quantity: ”,QTY}~
{IF @ISERR(QTY)H{BRANCH QTY_IN}

PRICE_IN {GETNUMBER “Enter price: ”,PRICE}~
{IF @ISERR(PRICE)HLET PRICE,“No price entered”}~
{GOTOJTOTAL~

{IF @ISNUMBER(PRICE)<>1}{BRANCH TOTAL_IN}
{IF @ISNA(DISCOUNT)}{BRANCH NODISCOUNT}
+QTY*(PRICE*DISCOUNT)~{QUIT}

NODISCOUNT +QTY*PRICE~{QUIT}
TOTAL_IN {LET TOTAL,PRICE}~

@ISSTRING

@ISSTRING(x) tests x to see if it is text or a label. If x is text or a cell that contains a
label, @ISSTRING returns 1 (true); if x is a value, NA, ERR, or blank, @ISSTRING
returns 0 (false).

Argument

x can be any value, single-cell location, text, or condition.

Uses

@ISSTRING is useful in macros to make sure a user enters the correct type of
information (values or labels).

Use @ISSTRING in formulas to avoid the values ERR and NA.

Example

In the following subroutine, CHKSTR checks the contents of the cell named
CUSTOMER. If CUSTOMER contains a label (@ISSTRING(CUSTOMER) = 1), the
subroutine branches to a macro named FILEORDER. If CUSTOMER does not
contain a label, the subroutine requests a new entry.

CHKSTR {IF @ISSTRING(CUSTOMER){BRANCH FILEORDER}
{GETLABEL “Enter customer name: ”,CUSTOMER}
{BRANCH CHKSTR}

@Function Descriptions 55

@LEFT }

@LEFT (string,n) returns the first n characters in string.

Arguments

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

n is a positive integer or 0, or the address or name of a cell that contains a positive
integer or 0, or a formula that returns a positive integer or 0. If is 0, the result is an
empty string. If n is greater than the length of string, @LEFT returns the entire string.

Uses

@LEFT is useful for copying only part of a label into another cell, starting at the
beginning of the label (for example, for separating titles such as Dr. and Ms. from
names).

In a macro, @LEFT can extract parts of labels the user enters to store them in a
database, to use in a subroutine, or to alter the macro itself.

Use @LEFT with @FIND when you do not know the exact value for n, or when n may
vary.

Notes

1-2-3 counts punctuation and spaces as characters in @LEFT.

Example

@LEFT(EUROPE_PHONE,3) = the country code for the telephone number in
EUROPE_PHONE.

@LEFT(A1,@FIND(“s”,A1,0)) = the first name in cell A1 (for example, Cara if cell Al
contains the name Cara Groden). The e (bullet) represents one space.

@LENGTH

@LENGTH(string) counts the number of characters in string.

Argument

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

Uses

Use @LENGTH with @TRIM to find the length of a string without including leading,
trailing, or consecutive spaces.

56 @Functions and Macros Guide

Use @LENGTH to determine the total length of a line before printing.

@LENGTH is also useful in any application in which labels should be a certain
length, such as zip codes and purchase order numbers.

Use @LENGTH to determine spacing for positioning labels in presentations.

Examples
@LENGTH("refrigerator”) = 12.

@LENGTH(A5&G12) = the total number of characters in cells A5 and G12, if both A5
and G12 contain labels.

@LN

@LN(x) calculates the natural logarithm (base e) of x.

Argument

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value greater than 0.

Uses

Use @LN in scientific calculations that require natural logarithms, such as compound
growth or loss.

Notes
A natural logarithm is one that uses the number e (approximately 2.718282) as a base.

Examples
@LN(2) = 0.693147.

@LN(B3) = 1.098612, if cell B3 contains the value 3.

@LOG

@LOG(x) calculates the common logarithm (base 10) of x.

Argument

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value greater than 0.

Uses

Use @LOG in any calculation that requires a common logarithm, such as a formula to
find a root of a number.

@Function Descriptions 57

Examples
@LOG(1000) = 3 (because 103 = 1000).

10MN@LOG(8)/3) = 2, the cube root of 8.
@LOG(B3) = 0.60206, rounded, if cell B3 contains the value 4.

@LOWER

@LOWER(string) converts all uppercase letters in string to lowercase.

Argument

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

Uses

@LOWER is useful when you combine labels from several sources, and you want the
case of the labels to be consistent throughout the worksheet.

Notes

If you selected the ASCII collating sequence when you installed 1-2-3, capitalization
affects the order of labels when you use /Data Sort. Two otherwise identical labels
may not appear together if their capitalization is different.

Example
@LOWER(“LOTUS Sales Forecast”) = lotus sales forecast.

@MAX

@MAX(list) finds the greatest value in list.

Argument

list is a series of values, or the addresses or names of cells that contain values,
separated by argument separators.

Uses

Use @MAX to find the greatest value in a series. @MAX is also useful when you
need to check for unusually large values or to find the largest value in some statistical
calculations.

Notes
@MAX ignores blank cells in the range, and treats cells that contain labels as 0.

58 @Functions and Macros Guide

Examples
@MAX(55,39,50,28,67,43) = 67.

@MAX(A1..C10) = the greatest value in A1..C10.

@SUM(DATA_VALUES)-@MAX(DATA_VALUES) = the total of all data values,
excluding the largest.

@MID

@MID(string,start-number,n) returns n characters from string, beginning with the
character at start-number.

Arguments

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

start-number is any positive value or 0, or the address or name of a cell that contains a
positive value or 0, or a formula that returns a positive value or 0. start-number is the
offset number of a character in string. If start-number is greater than the length of
string, the result of @MID is an empty string.

n is a positive integer or 0, the address or name of a cell that contains a positive
integer or 0, or a formula that returns a positive value or 0. If n is 0, the result of
@MID is an empty string. If 1 is greater than the length of string, 1-2-3 returns all the
characters from start-number to the end of string.

Uses

Use @MID to extract a part of a label that is not located at the beginning or end of the
label. To extract part of a label when you do not know its start-number, use @MID
with @FIND.

@MID is useful in macros to store parts of labels the user enters, to create subroutine
calls, or to alter the macro itself.

Notes
@MID copies punctuation and spaces included in string.

Examples

@MID(“Daily Account Balance”,6,7) = Account.

@MID(A2,@FIND(“s”,A2,0)+1,50) = the last name in cell A2 (for example, O’Brien if
cell A2 contains the name Eoghan O’Brien). The o (bullet) represents one space. Use

a large number (such as 50) for 7 if you do not know the length of string; 1-2-3 ignores
the extra length.

@Function Descriptions 59

@MIN

@MIN(ist) finds the least value in list.

Argument

list is a series of values, or the addresses or names of cells that contain values,
separated by argument separators.

Uses

Use @MIN to find the lowest value in a series, for example, the earliest date or the
youngest age. @MIN is also useful when you need to check for unusually small
values, or to find the smallest value in some statistical calculations.

Notes
@MIN ignores blank cells in the range, and treats cells that contain labels as 0.

Examples
@MIN(55,39,50,28,67,43) = 28.
@MIN(A1..C10) = the smallest value in A1..C10.

@SUM(DATA_VALUES)-@MIN(DATA_VALUES) returns the total of all data values,
excluding the smallest.

@MINUTE

@MINUTE(time-number) extracts the minutes, a value from 0 through 59, from
time-number.

Argument

time-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value from .000000 (midnight) through .999988 (11:59:59 PM.).
Usually, another time @function supplies time-number.

Uses

Use @MINUTE to extract only the minutes portion of time values created with
@TIMEVALUE, @NOW, or @TIME. The minutes portion is useful in calculations that
involve only minutes, such as the time that has elapsed since the start of an
application.

60 @Functions and Macros Guide

Notes

@TIME(hour,minutes seconds) returns the time number for the time you specify.
For example, @TIME(8,30,0) returns the time number 0.354167.

Examples
@MINUTE(0.333) = 59 because 0.333 is the time number for 7:59:31.

@MINUTE(@TIME(11,15,45)) = 15 because 15 is the minutes argument for
@TIME(11,15,45).

@MOD

@MOD(xy) calculates the remainder (modulus) of x/y.

Arguments

x and y are values, the addresses or names of cells that contain values, or formulas
that return values.

Uses

Use the mathematical @function @MOD to determine the remainder in a calculation
(for example, the amount of material left over from a production run). You can also
use @MOD to determine whether a number is even or odd: with a divisor of 2, an
even number has no remainder.

Use @MOD to calculate the day of the week by entering a date number as x and 7
(the number of days in a week) as y. 1-2-3 assigns a number to each day of the week:
0 for Saturday, 1 for Sunday, and so on to 6 for Friday. If you divide the date number
by 7, the remainder is the day of the week. For example, @MOD(@DATE(85,11,18),7)
=2; November 18, 1985 was a Monday.

Notes

The sign (+ or -) of x (the dividend) determines the sign of the result. If x is 0,
@MOD returns 0.

If y (the divisor) is 0, @MOD returns ERR.
1-2-3 uses the following formula to calculate the modulus: x—~(y*@INT(x/y)).

Examples
@MODO4) =1.
@MOD(-14,3) = -2.

@Function Descriptions 61

@MONTH

@MONTH (date-number) extracts the month (1 to 12) from date-number.

Argument

date-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value from 1 (January 1, 1900) through 73050 (December 31,
2099).

Uses

Use @MONTH to track months rather than entire dates. Use @MONTH to keep track
of events that happen in certain months, such as quarterly sales summaries, or to
calculate the months that have elapsed between events.

@MONTH can also supply the month argument for other date and time @functions
that build on previously calculated dates.

Notes

You can use another date and time @function to supply the argument for @MONTH,
as in the following examples.

Examples
@MONTH(@DATE(85,3,27)) = 3.

@MONTH(20181) = 4, because the date number 20181 is the date 02-Apr-55.
@MONTH(@NOW) = 11, if the current month is November.

@N

@N(range) returns the entry in the first cell of range as a value. If the cell contains a
label, @N returns the value 0.

Argument

range is a cell or range address, or a range name.

Uses

@N is useful to check user entries in a macro.

Examples
+100+@N(B5..F5) = 885, if cell B5 contains the value 785.

@N(A5)+@N(B5) = 785, if A5 contains a label and B5 contains the value 785.

62 @Functions and Macros Guide

@NA

@NA returns the value NA (not available).

Uses

@NA is useful when you are building a worksheet that will contain data that you
have not yet determined. Use @NA to flag cells where you will enter the data;
formulas that refer to those cells result in the value NA until you supply the correct
data.

@NA is also useful to determine which formulas depend on a particular cell. You can
also use the Auditor to determine which formulas depend on a particular cell. For
more information on the Auditor, see “Exploring Formulas with Auditor,” in
Chapter 3 of the User’s Guide.

Notes
NA is a special value that either 1-2-3 or you generate to indicate that a value needed
to complete a formula is not available.

NA will ripple through formulas: any formula that refers to a cell that contains NA
results in NA (no matter how the value NA is generated), unless the cell contains
@ERR. @ERR takes precedence over @NA. This ripple-through effect also means
that when you provide the previously unavailable value to a formula that contains
NA, the results of dependent formulas also become correct.

The label NA and the value NA are not equivalent in formulas. For example, the
formula +A2+34 = NA, if cell A2 contains @NA, but equals 34 when cell A2 contains
the label NA (because labels have the value zero).

Examples
@IF(@CELL(“type”,B14)="b” ,@NA,B14) = the value NA when B14 is blank.

@IF(B14>3,@NA,B14) = NA, if the value in cell B14 is greater than 3.

@NOW

@NOW calculates the number that corresponds to the current date and time. This
includes both a date number (integer portion) and a time number (decimal portion).

Uses

@NOW produces a record of the current date and time. This record is useful in

any calculation that requires the current date, for example, determining the time a
payment has been overdue. Use @NOW with EDIT and CALC to create a fixed
record of a date and time for time-stamping worksheets or in calculations of elapsed
time.

@Function Descriptions 63

Notes

Format the value of @NOW in any of the date or time formats. If you format @NOW
as a date, 1-2-3 displays only the date (integer) portion of the date and time number.
If you format @NOW as time, 1-2-3 displays only the time (decimal) portion of the
date and time number. In both cases, 1-2-3 stores the entire date and time number.

1-2-3 recalculates @NOW each time you recalculate your work. If you use
/Worksheet Global Recalculation to set recalculation to Automatic, 1-2-3 recalculates
@NOW whenever it recalculates another value.

1-2-3 uses the date and time from the current date and time settings on your
computer.

Examples
@NOW = 29221.0 at midnight on January 01, 1980.

@NOW = 32688.395 (rounded) at 9:28 A.M., June 29, 1989.

@NPV

@NPV (interest,range) calculates the net present value of a series of future cash-flow
values (range), discounted at a fixed periodic interest rate.

Arguments

interest is a decimal or percentage value, the address or name of a cell that contains a
decimal or percentage value, or a formula that returns a decimal or percentage value.

range is the single-row or single-column range that contains the cash flows.

Uses

Use @NPV to evaluate an investment or to compare one investment with others.
@NPV calculates the initial investment necessary to achieve a certain cash outflow at
a certain rate.

Notes

@NPV uses the following formula to calculate the net present value:

z v, where: v;...v, = series of cash flows in range
z aTlt_t‘_ int = interest rate
=1 n) n =number of cash flows
i = current iteration (1 through n)

@NPV assumes that the cash outflows occur at equal time intervals, that the first cash
outflow occurs at the end of the first period, and that subsequent cash flows occur at
the end of subsequent periods.

64 @Functions and Macros Guide

To determine the net present value of an investment where you make an initial cash
outflow immediately, followed by a series of future inflows, factor the initial outflow
separately, because it is not affected by the interest. To do this, add the initial cash
outflow to the result of the @NPV calculation.

@NPV returns ERR if range is not a single row or a single column.

Example

The following illustration shows how you can use @NPV to discount a series of
irregular distributions invested at an 11.5% annual rate to today’s dollars. The range
named DISTRIBUTIONS (column B) contains the list of cash flows. To provide
@NPV with the correct number of periods, months in which no distribution is made
are included in the range (cells B2, B3 and B12 contain 0). The distributions are made
monthly, so @NPV requires the interest (discount rate) to be expressed as a monthly
percentage; the cell named DISCOUNT (cell H3, calculated as H2/12) contains the
monthly rate.

H6: (€2) TW111 @NPV(DISCOUNT,DISTRIBUTIONS) READY
A B ¢ D E F 6 GEEgESE 4

1 Month Cash Flows >
2 1 s0.00 Annual interest (discount) rate 1505 A
3 2 - $0.00 Interest (discount) per period 0.96% :
'5‘ 2 Total capital distribution $41,000.00

7“ g Net present value $38,084.13

8 7

9 8

0 9

1 10

2 1

3 1R
.

15

16

17

Similar @functions

@PV determines the present value of an annuity based on a series of equal payments.
@FV calculates the future value of an annuity.

@PI

@PI produces the value m, which 1-2-3 approximates as 3.1415926536. T is the ratio of
the circumference of a circle to its diameter.

Uses

Use @P1 in calculations that require the value =, particularly in conjunction with
trigonometric functions.

@Function Descriptions 65

Examples
@PI = 3.1415926536.

@PI*4/2 = 50.26548, the area of a circle with a radius of 4.
@SIN(@PI/6) = .5, the sine of an angle that is 30°.

@PMT

@PMT (principal interest term) calculates the payment on a loan (principal) at a given
interest rate for a specified number of payment periods (term).

Arguments
principal is the value of the loan.

interest is the periodic interest rate.
term is the number of payment periods.

principal and term are values, the addresses or names of cells that contain values, or
formulas that return values. interest is a decimal or percentage value, the address or
name of a cell that contains a decimal or percentage value, or a formula that returns
a decimal or percentage value.

Uses

Use @PMT to calculate the payment necessary to amortize a loan or the periodic
payment returned by an annuity.

Notes

The period used to calculate interest must be the same period used for term; for
example, if you are calculating a monthly payment, enter the interest and term in
monthly increments. Usually, this means you must divide the interest by 12 and
multiply the number of years in term by 12.

@PMT uses the following formula to calculate periodic payment:

, int where: prin = principal
prin* ———— b = iodic interest rat
1-(nt+1)™" int = periodic interest rate
n =term

@PMT assumes payments occur at the end of each payment period (an ordinary
annuity).

If you make payments at the beginning of each month (an annuity due), you can
calculate the amount of the periodic payment on the annuity due with the formula
@PMT (principal interest term) / (1+interest).

66 @Functions and Macros Guide

Example

Suppose an $8,000 auto loan is available for 3 years at an annual interest rate of 14%,
compounded monthly. To determine your monthly payment, you use
@PMT(8000,0.14/12,36). 1-2-3 returns $273.42, the monthly payment.

To calculate the amount of the periodic payment on an annuity due, you use
@PMT(8000,0.14/12,36)/(1 + 0.14/12). 1-2-3 returns $270.27, the monthly payment.

@PROPER

@PROPER(string) capitalizes the first letter of each word in string and converts the
remaining letters to lowercase.

Argument

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

Uses

@PROPER is useful when you combine data from several sources and want labels to
be consistent throughout the worksheet file. If you selected the ASCII collating
sequence when you installed 1-2-3, use @PROPER in a database to ensure consistent
capitalization of names before sorting the names or before using the names to create
mailing labels.

Notes

If you selected the ASCII collating sequence when you installed 1-2-3, capitalization
affects the order of labels when you use /Data Sort. Two otherwise identical labels
may not appear together if their capitalization is different.

If string is a blank cell, @PROPER returns ERR.

Example

@PROPER(A7&“;e” &G7) returns Morton Smith; Athens, Georgia if A7 contains the
label MORTON SMITH, and G7 contains the label Athens, georgia. The ; (semicolon)
is in quotation marks and is therefore treated as a literal string instead of an
argument separator. The e (bullet) represents one space.

@PV

@PV(payments,interest,term) determines the present value of an investment. @PV
calculates the present value based on a series of equal payments, discounted at a
periodic interest rate over the number of periods in term.

@Function Descriptions 67

Arguments
payments is the value of the equal investments.

interest is the periodic interest rate.
term is the number of payment periods.

payments and term are values, the addresses or names of cells that contain values, or
formulas that return values. interest is a decimal or percentage value, the address or
name of a cell that contains a decimal or percentage value, or a formula that returns a
decimal or percentage value.

Uses

Use @PV to evaluate an investment or to compare one investment with others. @PV
is useful in comparing different types of investments, for example, comparing a
single payment investment from a pension fund with a series of periodic payments.
Use @PV with @PMT to create an amortization table.

Notes

@PV complements @MT: @PV tells you how large a loan you can take out, given
the constraint of the size of the monthly payment you can afford. Conversely, @°MT
tells you how large your monthly payment will be, given the constraint of the size of
the loan you want to take out.

@PV calculates present value with the following formula:

where: pmt = periodic payment
int = periodic interest rate

" 1-(1+int)y™
int n =term

pmt

@PV assumes each payment is made at the end of the period. To calculate the
present value of an annuity due (a payment made at the beginning of each period),
use the following formula: @PV (payments,interest,term)*(1 + interest).

Example

You won $1,000,000. You can receive either 20 annual payments of $50,000 at the end
of each year or a single payment of $400,000 instead of the $1,000,000 annuity. If you
were to accept the annual payments of $50,000, you assume that you would invest
the money at a rate of 8%, compounded annually.

To find out which option is worth more in today’s dollars, you enter
@PV(50000,.08,20). 1-2-3 returns $490,907, which tells you that the $1,000,000 paid
over 20 years is worth $490,907 in today’s dollars.

Similar @functions

@FV calculates the future value of an investment based on a series of equal
payments. @NPV computes the net present value of an investment, discounting
future value to present value.

68 @Functions and Macros Guide

@RAND

@RAND generates a random value between 0 and 1. 1-2-3 calculates @RAND to 17
decimal places. Each time 1-2-3 recalculates the worksheet, @RAND generates a new
random value. :

Uses

@RAND is useful in situations that require random numbers (for example,
generating test data for simulations or choosing returns to audit).

Notes

To convert the value generated by @RAND to a fixed value, use /Range Value or
highlight the cell that contains @RAND and then press F2 (EDIT) followed by F9 (CALC)
and ENTER.

To generate random values in different numeric intervals, multiply @RAND by the
size of the interval. Use @ROUND or @INT with the result to create random whole
numbers.

Examples
@RAND = 0.419501 or any value between 0 and 1.

@RAND*10 = 4.19501 or any value between 0 and 10.
@INT(@RAND*50)+1 =21, or any integer from 0 to 50, inclusive.
@ROUND(@RAND*100,0) = 42, or any integer from 0 to 100, inclusive.

@RATE

@RATE(future-value present-value,term) returns the periodic interest rate necessary
for an investment (present-value) to grow to a future-value over the number of
compounding periods in term.

Arguments

future-value, present-value, and term are values, the addresses or names of cells that
contain values, or formulas that return values.

Uses

Use @RATE to evaluate an investment or to compare one investment with others.
@RATE is useful when you need to calculate the compound rate of an investment,
such as the value of a stock, or in any situation where you know the initial value, the
final value, and the time elapsed between the two.

@Function Descriptions 69

Notes
@RATE uses the following formula to calculate the periodic interest rate:

o\ where: fv = future value
(——-) -1 pv = present value
pvy n =term
Example

You invested $10,000 in a bond that matures in five years and has a maturity value of
$18,000. Interest is compounded monthly. To determine the periodic interest rate for
this investment, you enter @RATE(18000,10000,60). 1-2-3 returns .984%, the periodic
(monthly) interest rate. To determine the annual interest rate, use the formula
((1+@RATE(18000,10000,60))*12)-1. This yields an annual interest rate of 12.47%.

@REPEAT

@REPEAT (string,n) duplicates string the number of times specified by 7.

Arguments

string is text, a text formula, the address or name of a cell that contains a label or text
formula.

n is a positive integer, the address or name of a cell that contains a positive integer, or
a formula that returns a positive integer.

Uses

Use @REPEAT to repeat any printable character, including special mathematical,
graphics, or foreign language symbols. @REPEAT is useful in presentations to create
lines on either side of labels.

Notes

@REPEAT duplicates the string as many times as you specify; it is not limited by the
current column width. This differs from using the repeating label-prefix character \
(backslash), which repeats a label only as many times as will fill the current column.

Examples
@REPEAT(“Helloe”,3) returns Hello Hello Hello. The e (bullet) represents one space.

@REPEAT(“_”,@LENGTH(B2)) underlines a label in cell B2 if the current cell is B3.

70 @Functions and Macros Guide

@REPLACE

@REPLACE(original-string,start-number,n,new-string) replaces n characters in
original-string with new-string, beginning at start-number.

Arguments
original-string and new-string are text, text formulas, or the addresses or names of cells
that contain labels or text formulas.

start-number is the offset number of a character in original-string. It can be any
positive value or 0, the address or name of a cell that contains a positive value or 0, or
a formula that returns a positive value or 0. If start-number is greater than the length
of original-string, @REPLACE appends new-string to original-string.

n is a positive integer or 0, the address or name of a cell that contains a positive
integer or 0, or a formula that returns a positive integer or 0. If n is 0, @REPLACE
appends new-string to original-string.

Uses

Use @FIND with @REPLACE to search for and replace a label or to calculate an
unknown start-number.

@REPLACE is useful when you need to replace one set of characters with another
(for example, to change the area code in a database of telephone numbers).

Notes

@REPLACE counts all the characters in a string, including spaces and punctuation. If
you use @REPLACE to append or insert text, remember to include the necessary
spaces.

Example

@REPLACE(SOLD,@FIND(“-",SOLD,0),1,”/”) displays the label in SOLD, 4-24, as
4/24.

@RIGHT

@RIGHT (string,n) returns the last n characters in string.

Arguments

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

@Function Descriptions 71

n is a positive integer or 0, the address or name of a cell that contains a positive
integer or 0, or a formula that returns a positive integer or 0. If n is 0, the result is an
empty string. If n is greater than the length of string, @RIGHT returns the entire
string.

Uses

@RIGHT is useful for copying only part of a label into another cell (for example, for
extracting last names from labels that include both first and last names).

In a macro, @RIGHT can extract parts of labels the user enters to store them in a
database, to use in a subroutine, or to alter the macro itself.

Use @RIGHT with @FIND and @ .LENGTH when you do not know the exact value for
n, or when n may vary.

Notes
@RIGHT counts punctuation and spaces as characters.

Examples
@RIGHT("Average Daily Balance”,7) = Balance.

@RIGHT(B3,5) = Sales, if B3 contains the label January Sales.

@RIGHT(A1,@LENGTH(A1)-@FIND(“s”,A1,0)-1) = the street name in cell A1 (for
example, Main Street if cell A1 contains the label 123 Main Street). The ¢ (bullet)
represents one space.

@ROUND

@ROUND(x,n) rounds the value x to the nearest multiple of the power of 10 specified
by n.
Arguments

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value.

n is a value, the address or name of a cell that contains a value, or a formula that
returns a value from -15 through 15.

Uses

Use @ROUND in calculations in which you want to use only the rounded portion of
a value.

@ROUND is useful in any application that needs a particular number of decimal
places (or tens, hundreds, and so on).

72 @Functions and Macros Guide

Notes

If n is positive, @ROUND affects the decimal portion of the number (moving right
from the decimal point). For example, if 7 is 2, 1-2-3 rounds x to the nearest
hundredth.

If n is negative, BROUND affects the integer portion of the number (moving left from
the decimal point) and discards any decimal portion. For example, if # is -2, 1-2-3
rounds x to the nearest hundred.

If nis 0, 1-2-3 rounds x to the nearest integer.

Use /Range Format Fixed or /Worksheet Global Format Fixed to display values with
a specified number of decimal places if you want 1-2-3 to calculate the values to their
full precision; do not use @ROUND.

@ROUND differs from @INT in that @INT returns the integer portion of a value,
without rounding the value.

Examples
@ROUND(134.578,2) = 134.58.

@ROUND(134.578,0) = 135.
@ROUND(134.578,-2) = 100.

@ROWS

@ROWS(range) counts the number of rows in range.

Argument

range is a cell address or range name.

Uses

@ROWS is useful when you need to determine a value that depends on the number
of rows (for example, to find the length of a range you want to print).

Use @ROWS with {FOR} in a macro that repeats the same action on a series of rows
in a range when the number of rows is unknown.

Examples
@ROWS(A3..B7) = 5 (rows 3 through 7).

@ROWS(SCORES) = 43, if SCORES is the range B3..B45.
@ROWS(A6..A6) =1.

@Function Descriptions 73

@S

@S(range) produces the entry in the upper left cell in range as a label. If the cell
contains a label, @S returns that label; if the cell contains a value or is blank,
@S returns an empty string.

Argument

range is a cell address or range name.

Uses

@S is useful with any string @function or text formula when a cell may contain a
value and the entry must be a label (for example, a cell that contains a ZIP code). Use
@S to prevent text formulas from resulting in ERR (for example, +A1&A2 returns
ERR if either cell contains a value).

@S is also useful in macros to check user entries.

Example

In the following macro instructions, @S returns an empty string if B6 contains a value
or is a blank cell; 1-2-3 then beeps and changes the mode indicator to ENTRY MUST
BE A LABEL.

{IF @S(B6)=""}{BEEPH{INDICATE “ENTRY MUST BE A LABEL"}

@SECOND

@SECOND(time-number) extracts the seconds, an integer from 0 through 59, from
time-number.

Argument

time-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value whose decimal portion is from .000000 (midnight)
through .999988 (11:59:59 PM.). @SECOND uses only the decimal portion of
time-number.

Uses

Use @SECOND to use only the seconds portion of time values created with @NOW,
@TIME, or @ IMEVALUE.

Examples
@SECOND(0.333) = 31.

@SECOND(@TIME(11,15,45)) = 45, because 45 is the seconds argument for
@TIME(11,15,45).

74 @Functions and Macros Guide

@SIN

@SIN(2) calculates the sine of an angle. Sine is the ratio of the side opposite an
acute angle of a right triangle to the hypotenuse: sin(angle) = side opposite the
angle/hypotenuse.

Argument

z is a value, the address or name of a cell that contains a value, or a formula that
returns a value of an angle measured in radians.

Uses

Use @SIN to calculate the ratio of the side opposite angle z to the hypotenuse when
you know angle z.

Use @SIN to find the cosecant, or reciprocal of @SIN, with the following formula:
1/@SIN(z).

Use @SIN to find either the opposite side or the hypotenuse when only one is known.

Notes
To convert from degrees to radians, multiply degrees by @PI/180.

Examples

In the following right triangle, angle z is 35°. Using @SIN(35*@PI/180) is the same as
dividing the length of the side opposite angle z by the length of the hypotenuse.

@SIN(35*@P1/180) = 0.573576; so the sine of z
is 0.573576. If the hypotenuse is 10, the side
opposite the angle (calculated as

? @SIN(35*@P1/180)*10) is 5.73576.

@SLN

@SLN(cost,salvage life) calculates the straight-line depreciation allowance of an asset
with an initial value of cost, an expected useful life, and a final value of salvage, for
one period.

Arguments
cost is the amount paid for the asset.

salvage is the value of the asset at the end of its life.

@Function Descriptions 75

life is the number of periods the asset takes to depreciate to its salvage value.

cost, salvage, and life are values, the addresses or names of cells that contain values, or
formulas that return values.

Uses

Use @SLN to calculate an asset’s depreciation when the situation does not require
accelerated depreciation.

Notes

Straight-line depreciation divides the depreciable cost (the actual cost minus the
salvage value) equally into each period of the useful life of the asset. The useful life
is the number of periods (typically years) over which the asset is depreciated.

@SLN uses the following formula to calculate straight-line depreciation:

(c—29) where: ¢ = cost of the asset
s = salvage value of the asset
n = useful life of the asset

n

Example

You have an office machine worth $10,000. The useful life of this machine is 10 years,
and the salvage value in 10 years will be $1200. To calculate the yearly depreciation
expense using the straight-line method, you enter @SLN(10000,1200,10). 1-2-3
returns $880, the yearly depreciation allowance.

Similar @functions

@DDB calculates depreciation using the double-declining balance method, and @YD
uses the sum-of-the-years’-digits method.

@SQRT

@SQRT(x) returns the positive square root of x.

Argument

x is a positive value, the address or name of a cell that contains a positive value, or a
formula that returns a positive value.

Uses

Use @SQRT to calculate with or find the square root of a number. Use @SQRT with
@ABS to force x to be positive: @SQRT(@ABS(x)).

Examples
@SQRT(B3) = 10, if B3 contains the value 100.

@SQRT(-2) = ERR, because x is negative.

76 @Functions and Macros Guide

@STD

@STD(list) calculates the standard deviation in a list of values.

Argument

list is a series of values, or the addresses or names of cells that contain values,
separated by argument separators.

Uses

Standard deviation measures the degree to which individual values in a list vary
from the mean (average) of all values in the list. The lower the standard deviation,
the less individual values vary from the mean, and the more reliable the mean. A
standard deviation of 0 indicates that all values in the list are equal.

The standard deviation is the square root of the variance (@VAR).

Use @STD to find the standard deviation within a population of values (for example,
the degree to which individual scores or weights vary from the mean). @STD is
useful for statistical calculations that involve finite groups, such as test scores, salary
distributions, or ages of people in a company.

Notes

@STD uses the n, or population, method to calculate standard deviation of
population data. The n method assumes that the values in list are the entire
population. If list is only a sample of the population, the standard deviation is biased
because of errors introduced in taking the sample. The n method uses the following
formula:

- S where: n = number of items in list
\/2 (vi—avg) v; = the ith item in list
n avg = average of values in list

You use the n-1 method (sample standard deviation) to produce an unbiased
standard deviation for a sample. The n-1 method uses the following formula, where
list is the series of values for which you are calculating standard deviation.

@STD(list)*SQRT(@COUNT (list) / (@COUNT (list)-1))

Example

In the following illustration, cell D37 shows the result of using @STD to calculate the
standard deviation of the ages of the houses sold in April and May (the range
AGE_LIST in F26..F35).

@Function Descriptions 77

p37: (F2) [W11] @STD(AGE_LIST) READY

A B 4 F 6 <
25 DATE ADDRESS BR BROKER >
26 03-Apr 467 Brattle 4 JCompton A
27 05-Apr 183 Hillside 3 CGroden v
28 10-Apr 64 N. Gate 2 AMiller T
29 l4-hpr 80 Mt. Auburn 2 JCompton
30 14 Charles 4 AMiller
31 27-Apr 1160 Memoriat 1 AMiller
32 0O4May 130 Crescent 3 CGroden
33 10-May 12 Trenton 2 AMiller
34 11-May 36 Barnes 4 JCompton
35 234 Third 2 JCompton
36
m}s % Standard deviation of AGE:
39
40
41

AGE_LIST

Similar @functions

@VAR calculates the population variance of list. @DSTD calculates the standard
deviation of values that meet criteria you specify.

@STRING

@STRING(x,n) converts the value x to a label with n decimal places.

Arguments

x is a value, the address or name of a cell that contains a value, or a formula that
returns a value.

n is an integer, the address or name of a cell that contains an integer, or a formula that
returns an integer from 0 through 15.

Uses

@STRING is useful when you need to use a value as text, such as in a text formula to
form a complex label. For example, if cell B3 contains the value 78 and cell B4
contains the label Lincoln Avenue, the formula @ TRING(B3,0)& " ¢” &B4 produces
the string 78 Lincoln Avenue. Each e (bullet) represents one space.

Notes

@STRING ignores any formatting characters 1-2-3 uses to display the value x. This
includes all currency and other numeric formatting symbols, whether you enter them
or 1-2-3 creates them after you select a format from /Range Format or / Worksheet
Global Format. For example, if cell A7 contains the formatted value $45.23,
@STRING(A7,2) = the label 45.23.

78 @Functions and Macros Guide

Examples
@STRING(B4,3) = the string 203.000, if cell B4 contains the value 203.

@STRING(1.23587,0) = the string 1.
@STRING(20%,1) = the string .2.

@SUM

@SUM(list) adds the values in list.

Argument

list is a series of values, or the addresses or names of cells that contain values,
separated by argument separators.

Uses

Use @SUM to find the total value of a series of values, such as total sales or gross
budget projections. @SUM eases the time-consuming task of adding the values in
individual ranges: @SUM(B1..B5) is equivalent to the formula +B1+B2+B3+B4+B5.

You can also use @SUM to add a variety of cells and ranges, for example
@SUM(AL1..B3,C10,200,RANGE1).

Notes
@SUM ignores blank cells in the range, and treats cells that contain labels as 0.

Example

The following illustration shows house sales for April and May. Cell D37 shows the
result of using @SUM to find the total commission paid on sales in April, cell D38
shows the total commission paid on sales in May, and cell D39 shows the total
commission paid for both months.

@Function Descriptions 79

Similar @functions

@DSUM calculates the sum of values that meet criteria you specify.

@SYD

@SYD(cost,salvage life period) calculates the sum-of-the-years’-digits depreciation
allowance of an asset with an initial value of cost, an expected useful /ife, and a final
value of salvage, for a specified period.

Arguments
cost is the amount paid for the asset.
salvage is the value of the asset at the end of its life.

life is the number of periods (typically, years) the asset takes to depreciate to its
salvage value.

period is the time for which you want to find the depreciation allowance.

cost, salvage, life, and period are values, the addresses or names of cells that contain
values, or formulas that return values.

Uses

The sum-of-the-years’-digits method accelerates the rate of depreciation so that more
depreciation expense occurs in earlier periods than in later ones (although not so
much as when you use the double-declining balance method). The depreciable cost
is the actual cost minus the salvage value.

Use @SYD when you need a higher depreciation expense early in the life of an asset,
such as in preparing tax returns.

Notes

@SYD uses the following formula to calculate depreciation using the
sum-of-the-years’-digits method:

where: ¢ = cost of the asset

(c=9*Mn-p+1 s = salvage value of the asset
(n*(n+1)/2) p = period for which depreciation is
being calculated
n = calculated useful life of the asset
Example

You have an office machine worth $10,000. The useful life of the machine is 10 years,
and the salvage value in 10 years will be $1200. To calculate the depreciation
expense for the fifth year using the sum-of-the-years’-digits method, you enter
@SYD(10000,1200,10,5). 1-2-3 returns $960, the depreciation allowance for the fifth
year.

80 @Functions and Macros Guide

Similar @functions

@DDB calculates depreciation using the double-declining balance method, and @SLN
calculates depreciation using the straight-line method.

@TAN

@TAN(z) calculates the tangent of angle z. The tangent is the ratio of the side
opposite an acute angle of a right triangle to the side adjacent to the same acute
angle: tan(angle) = side opposite/side adjacent.

Argument

z is a value, the address or name of a cell that contains a value, or a formula that
returns a value of an angle measured in radians.

Uses

Use @TAN, instead of a tangent table, to calculate the tangent of an angle. Use
@TAN to find the cotangent, or reciprocal of @TAN, with the following formula:
1/@TAN(z).

Notes
To convert from degrees to radians, multiply degrees by @PI/180.

Example

In the right triangle below, angle z is 35°. Using @ TAN(35*@P1/180) is the same as
dividing the length of the side opposite angle z by the length of the adjacent side.

@TAN(35*@PI/180) = 0.700208, rounded; so the
2 tangent of z is 0.700208.

z=35°

adjacent

@TERM

@TERM (payments,interest future-value) calculates the number of compounding period
(payments) required for an investment to accumulate to a future-value at a periodic
interest rate.

@Function Descriptions 81

Arguments

payments is the value of the equal investments.
interest is the periodic interest rate.

future-value is the amount you want to accumulate.

payments and future-value are values, the addresses or names of cells that contain
values, or formulas that return values. interest is a decimal or percentage value, the
address or name of a cell that contains a decimal or percentage value, or a formula
that returns a decimal or percentage value.

Uses

Use @TERM when you need to calculate how long it will take for equal periodic
deposits, payments, or additions to reach a specific amount at a given interest rate.

Notes

@TERM assumes you are using an ordinary annuity: payments are made at the end of
each period.

@TERM uses the following formula to calculate the payment term:

In(1 + (fv * int/pmt)) where: pmt = periodic payment
- fv = tuture value
In(1 + int) int = periodic interest rate
In = natural logarithm

If you made payments at the beginning of each year, you would calculate the amount
for an annuity due. To calculate the number of payment periods in an annuity due,
use the formula @TERM (payment interest, future value/ (1+interest)).

For example, @ TERM(2000,0.075,100000 /(1+0.075)) = 20.8, the number of years it
would take to accumulate $100,000 if you made deposits of $2,000 at the beginning of
each year.

You can calculate the term necessary to pay back a loan by using @ERM with a
negative future value. For example, you want to know how long it will take to pay
back a $10,000 loan at 10% yearly interest, making payments of $1,174.60 per year.
@ABS(@TERM(1174.6,0.1,-10000)) = 20 years to pay back the loan.

Example

You deposit $2,000 at the end of each year into a bank account. Your account earns
7.5% a year, compounded annually. To determine how long it will take to accumulate
$100,000, you enter @TERM(2000,.075,100000). 1-2-3 returns 21.5, the number of
years it will take to accumulate $100,000 in your account.

Similar @functions

@CTERM calculates the number of compounding periods for a single-deposit
investment.

82 @Functions and Macros Guide

@TIME

@TIMEc(hour,minutes,seconds) calculates the time number for the specified hour,
minutes, and seconds. For an explanation of time numbers, see “Date and Time
@Functions” on page 7.

Arguments

hour is a value, the address or name of a cell that contains a value, or a formula that
returns a value from 0 (midnight) through 23 (11:00 PM.).

minutes is a value, the address or name of a cell that contains a value, or a formula
that returns a value from 0 through 59.

seconds is a value, the address or name of a cell that contains a value, or a formula
that returns a value from 0 through 59.

If hour, minutes, or seconds is not a value, @TIME returns ERR.

Uses

Use @TIME to enter time numbers so that 1-2-3 can perform time arithmetic. Time
arithmetic is useful when you need to determine the differences between times (for
example, when you need to keep track of elapsed times for billing or in test runs).
@TIME is also useful in calendar worksheets.

Notes

/Range Format and /Worksheet Global Format can make the time number appear as
the time it represents.

Example

The formula (@TIME(13,0,0)-@TIME(9,15,0))*95*24 calculates the amount due to a
consultant on a given day by subtracting the stop time from the start time and
multiplying the result by an hourly rate of $95.00. The result is $356.25.

@TIMEVALUE

@TIMEVALUE(string) calculates the time number specified in string. For an
explanation of time numbers, see “Date and Time @Functions” on page 7.

Argument

string is text, a text formula, or the address or name of a cell that contains a label or
text formula, in one of the four 1-2-3 time formats: HH:MM:SS AM/ PM, HH:MM
AM/PM, HH:MM:SS (24 hour), or HH:MM (24 hour).

@Function Descriptions 83

Uses

The uses of @ TIMEVALUE are the same as those for @TIME, but @ IMEVALUE
makes entering arguments simpler.

@TIMEVALUE is useful when you need to convert times entered as labels into time
numbers for use in calculations. @ IMEVALUE is especially useful with data that
has been imported from another program, such as a word processing program.

Notes

/Range Format and /Worksheet Global Format make the time number appear as the
time it represents.

Examples

@TIMEVALUE(“08:19:27 AM”) = 0.34684 or 08:19:27 AM, if the cell is formatted as
HH:MM:SS AM/PM.

@TIMEVALUE(“15:19:27 AM”) = .63851 or 03:19:27 PM, if the cell is formatted as
HH:MM:SS AM/PM.

@TIMEVALUE(”08:19:27 PM”) = .84684.

@TRIM

@TRIM(string) removes leading, trailing, and consecutive space characters from
string.
Argument

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

Uses

Use @TRIM when entries contain unnecessary spaces, such as labels positioned by
adding spaces in cells, or labels imported from another program.

@TRIM is also useful to control spaces entered with data or to combine strings that
have unknown spacing. @TRIM ensures that database entries do not contain
unnecessary spaces that would affect sort order.

Examples

In the following examples, each e (bullet) represents one space.
@TRIM(“e450e3/8") = 453 /8.

@TRIM(“#500eeeSoutheeSt.”) = 500 South St.

84 @Functions and Macros Guide

@TRUE

@TRUE returns the logical value 1.

Uses

Use @TRUE with @functions such as @IF and @ CHOOSE to display 1 (true) if a
condition is met.

@TRUE is useful as the x argument of @IF, which is the value returned if the
condition is met.

Notes

If a logical statement such as A1 = Bl is true, its logical value is 1. If it is false, its
logical value is 0.

Using @TRUE is the same as using the value 1 in formulas that evaluate logical
conditions, but @TRUE makes the formula easier to read.

Use @TRUE with macros or @functions such as @IF and @ CHOOSE that require a
logical value of 1 (true). You can use either @ RUE or any nonzero value in formulas
that evaluate logical conditions, but @ '/RUE makes the formula easier to read.

Example
@IF(A6>500,@TRUE,@FALSE) = 1, when cell A6 contains a value greater than 500.

@UPPER

@UPPERC(string) converts all the letters in string to uppercase.

Argument

string is text, a text formula, or the address or name of a cell that contains a label or
text formula.

Uses

@UPPER is useful when you combine labels from several sources and want
capitalization to be consistent throughout the worksheet. Use @UPPER when you
want to ensure that labels are consistently uppercase.

Notes

If you selected the ASCII collating sequence when you installed 1-2-3, capitalization
affects the order of labels when you use /Data Sort. Two otherwise identical labels
may not appear together if their capitalization is different.

@Function Descriptions 85

Examples
@UPPER(“Account Number”) = ACCOUNT NUMBER.

@UPPER(B2) = WARNING;, if B2 contains the label warning.

@VALUE

@VALUE(string) converts a number entered as a string to'its corresponding value.

Argument

string is text or a label that contains only numbers. string can resemble a standard
number (456.7), a number in scientific format (4.567E2), a mixed number
(45 7/8), or a formatted number ($32.85).

Uses

Use @VALUE to convert text that consists of numbers into values you can use in
mathematical calculations. @VALUE is useful when you need to convert entries
retrieved from another source into values.

Notes

@VALUE ignores leading and trailing spaces; however, @VALUE returns ERR when
string contains spaces that separate symbols from the numbers (such as $ 32.85 or
£ 56.20).

@VALUE results in 0 when string is a blank cell or empty string, and returns ERR
when string contains non-numeric characters.

Use /Range Value to replace @VALUE with its value.

You cannot calculate within a string argument in @ VALUE, but you can create a
formula with several @VALUE functions. For example, @VALUE(”22”+720") =0,
but @VALUE(“22”)+@VALUE("20”) = 42.

The format you use to specify string depends on the currency and punctuation
settings specified with /Worksheet Global Default Other International.

Examples
@VALUE(”543”) = the value 543.

@VALUE(B3) = 49.75, if cell B3 contains the label 49 3/4.
@VALUE(“85%") = .85.

86 @Functions and Macros Guide

@VAR

@VAR(list) calculates the population variance in a list of values.

Argument

list is a series of values, or the addresses or names of cells that contain values,
separated by argument separators.

Uses

Variance measures the degree to which individual values in a list vary from the mean
(average) of all the values in the list. The lower the variance, the less individual
values vary from the mean, and the more reliable the mean. A variance of 0 indicates
that all values in the list are equal.

Use @VAR to calculate the variance from the mean of a list of values when list
contains all values for the group, as in an employee database or a set of test scores.
Variance is necessary in several ANOVA (analysis of variance) statistical tests.

Notes

@VAR uses the n, or population, method to calculate variance. The n method
assumes the selected values are the entire population. If the values are only a sample
of the population, the variance is biased because of errors introduced in taking a
sample. The n method uses the following formula:

where: n = number of values in list
v; = theith value in list
n avg = average of values in list

Z (vi-avg)

You use the n-1 method (sample population variance) to produce an unbiased
variance for a sample. The n-1 method uses the following formula, where list is the
series of values for which you are calculating the population variance.

@VAR(list)*@COUNT(list) / (@COUNT(list)-1)

Example

The following illustration lists house sales for April and May. Cell D37 shows the
result of using @VAR to calculate the variance in the age of the houses in the list.

@Function Descriptions 87

p37: [W111 AVAR(F26..F35) READY

A B 4
25 DATE ADDRESS 1 4
26 03-Apr 467 Brattle 48 JCompton -
27 05-Apr 183 Hillside 22 CGroden v
28 10-Apr 64 N. Gate 21 AMiller K4

29 l4-hpr 80 Mt. Auburn
30 25~Apr 14 Charles

31 27-Apr 1160 Memorial
32 O4May 130 Crescent

70 JCompton
52 AMiller
42 AMiller
23 CGroden
21 AMiller
35 JCompton
60 JCompton

Similar @functions
@DVAR calculates the population variance of values that meet criteria you specify.

@VLOOKUP

@VLOOKUP(x,range,column-offset) produces the contents of a cell in a specified
column of a vertical lookup table.

Arguments

x is a value or text, the address or name of a cell that contains a value or text, or a
formula that returns a value or text. If x is a value that is less than the first value in
range, @VLOOKUP returns ERR. If x is greater than the last value in range,
@VLOOKUP stops at the last cell in column-offset. If x is text, it must be an exact
match of the text in range.

range is a cell address or range name. The values in the first column of the table
(range) must be in ascending order. 1-2-3 compares the value x to each cell in the first
column. When 1-2-3 locates a cell in the first column that contains x (or the value
closest to, but not greater than, x), it moves across that row the number of columns
specified by column-offset and returns the contents of that cell as the answer.

column-offset is a value, the address or name of a cell that contains a value, or a
formula that returns a value from 0 through 255. The column-offset number
corresponds to the position the column occupies in range. The first column has an
offset number of 0, the second column has an offset number of 1, and so on. If
column-offset is positive, 1-2-3 moves across the row the specified number of columns;
if column-offset is 0, 1-2-3 stays in the first column.

88 @Functions and Macros Guide

Uses

Use @VLOOKUP when you need to choose items from a table, or to automate data
selection for formulas or macros, such as in an application that supplies prices from a
price list.

@VLOOKUP is useful for finding entries in tables, such as tax tables or sales
commission tables, which contain many different choices based on different
variables.

Notes

The first column of the lookup table must be in ascending order.

@VLOOKUP is case-sensitive and accent-sensitive; for example, if x is the text Paris,
@VLOOKUP will not match it with a cell that contains PARIS, and the letter a will not
match the letter a.

Example

In the following illustration, a tax table named TAXTABLE (A3..E11) lists tax amounts
based on income and filing status. The simple form in G3..H5 uses @/LOOKUP to
retrieve a tax amount based on the income entered in INCOME (cell H3) and the
filing status entered in STATUS (cell H4). When INCOME contains $35,329 and
STATUS contains 1, @V LOOKUP(INCOME, TAXTABLE,STATUS) returns $9351, the
tax amount for the income figure that is closest to, but not greater than, the value in
INCOME.

H5: (C2) [W11] QVLOOKUPCINCOME, TAXTABLE,STATUS) READY

B D E F
—F%Llﬂg ST%JUS—;
$35,000 $9,219 $7,265 $11,315 $8,531 Income ﬂ&ﬂ%w

$9,241 $T,282 $11,340 $8.552 Status
7, gﬁ% Tax $9,351.00

jsomﬂogbuma
85555885
8
g
2
B

Similar @functions

@HLOOKUP looks up a value in a horizontal lookup table. @ NDEX finds a value
when you specify offset numbers for both the column and the row. @ CHOOSE
replaces a lookup table that requires only one row.

@Function Descriptions 89

@YEAR

@YEAR(date-number) extracts the year, an integer from 0 (1900) through 199 (2099),
from a date number.

Argument

date-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value from 1 (January 1, 1900) through 73050 (December 31,
2099).

Uses

Use @YEAR when you need only the year, rather than the entire date (for example, to
determine whether an item was purchased in or before a particular year for warranty
restrictions or bond maturity, or to calculate seniority or length of tenure for benefits).

@YEAR can also supply the year argument for other date @functions that build on
previously calculated dates.

Notes

Add 1900 to @YEAR to convert it into a 4-digit year. For example,
@YEAR(20181)+1900 creates the 4-digit year 1955.

Examples
@YEAR(20181) = 55, because the date number 20181 is the date 02-Apr-55.

@YEAR(@NOW) = the current year.
@YEAR(@DATEVALUE(“14-Feb-917)) = 91.

90 @Functions and Macros Guide

Chapter 3
Macro Basics

This chapter provides basic information on macros: definitions, rules for creating
and using them, and descriptions of the types of macros you can create. This chapter
also lists the different categories of macro commands, including the macro key
equivalents. For a detailed description of each macro command, see Chapter 4
beginning on page 111.

What Is a Macro?

You can use macros to speed up repetitive or complex tasks. A macro is a set of
instructions that automates tasks in 1-2-3. Macros can include procedures entered
from the keyboard and/or macro commands.

* Macros can automate procedures you normally perform from the keyboard,
such as using menu commands.

* Macros can perform complex tasks and programming procedures, such as
for-loops and if-then-else statements.

* Macros can guide users who are unfamiliar with 1-2-3 through tasks and
applications that you create and control.

You can use a macro from the worksheet or a macro library.

Macro Definitions

The following examples show the different elements you use when you enter macros.

Keyword Arguments

Macroname ———{ \a | {OPEN “SALES90.PRN" R} |

Argument separator
Keystrokes Close brace
|
Macro name _Lc:' AVE] / f5'~r
Open brace {GETLABEL “Quit now? ”,B4}—
|
I
Blank cell

91

Arguments are data you provide for many macro commands. 1-2-3 macro
commands accept four types of arguments: number, string, location, and condition.
1-2-3 uses arguments when it runs the macro.

Argument separators separate two or more arguments. 1-2-3 allows three argument
separators: , (comma), ; (semicolon), and . (period). You can always use a

; (semicolon) to separate arguments and, depending on the setting of /Worksheet
Global Default Other International Punctuation, you can also use either . (period) or
, (comma).

Blank cell is a cell that does not contain an entry or a label-prefix character. A blank
cell (or a {RETURN} command, a {QUIT} command, or a cell that contains a value)
indicates the end of a macro or a subroutine.

Braces enclose all macro commands (including arguments) and key names that
replace 1-2-3 keys such as F2 (EDIT) or F9 (CALC).

Keystrokes are ordinary 1-2-3 keystroke or menu commands used as part of a macro.
For example /WCS15~ are the keystrokes used to change the current column’s width
to 15. (The ~ (tilde) is the keystroke equivalent of ENTER.)

Macro keyword is the key name or the name of a 1-2-3 macro command. For
example, {DOWN]} and {GETLABEL} are macro keywords.

Macro name is the range name you assign to a macro to help you remember what the
macro does and to make the macro easier to run. The macro name is the command
you use to start the macro.

NOTE Mouse actions are not acceptable as macro instructions. You must use
keystrokes to select commands and data in a macro.

Macro Format and Rules

A macro must include instructions for every step of the task or procedure it
automates. Before you write a macro, go through the task or procedure manually,
noting the commands and keystrokes you use in each step.

If you use keystrokes for every action, 1-2-3 can record the keystrokes if you specify
a learn range (/ Worksheet Learn) and press ALT-F5 (LEARN). You can view the
column that contains the learn range, copy the keystrokes you need, and use them
in the worksheet as a macro. (See “Creating a Macro with the Learn Feature” on
page 104.) The simplest sort of macro uses only keystrokes — for example, to save
the worksheet — and using ALT-F5 (LEARN) is the easiest way to create this sort of
macro. You can also type the macro in a single column in the worksheet.

Other macros automate tasks with macro commands — commands you enter in the
macro that tell 1-2-3 what to do. Macro commands are an easy-to-use programming
language within 1-2-3. When you combine macro commands and keystrokes in a
macro, you can create applications that simplify complex tasks or automate
time-consuming and repetitive chores. For example, use {FORM] to create a data

92 @Functions and Macros Guide

entry form that prompts for specific information, checks the responses, and enters the
data in the worksheet; or use {FOR} to repeat a task a specified number of times.

You can create macros to use with Wysiwyg, Auditor, Viewer, and Macro Library
Manager. However, you cannot create macros to use with the mouse, with dialog
boxes, or with the Wysiwyg :Graph Edit commands.

NOTE The second confirmation prompt for /Worksheet Erase and /File Retrieve
does not appear while a macro is running.

Follow the guidelines below to enter keystrokes and macro commands in a macro.

Keystrokes

Most macros contain keystrokes that automate procedures, such as entering data or
choosing menu commands. These procedures consist of keyboard characters (letters,
numbers, symbols) and commands. To enter keystrokes in a macro, type (as labels)
the keystrokes you want 1-2-3 to perform. Type the keystrokes in a single cell or in
adjacent cells in a single column. For example, the following macro inserts a row and
types the label Denise’s Dairy Parlour in the current cell. (The ~ (tilde) represents
ENTER.)

"/ WIR~
"Denise’s Dairy Parlour~

A label-prefix character (' * or ”) is required if the macro instruction begins with
slash (/), backslash (\), a number, or one of the numeric symbols < + <> <= - @
. (#ors$.

Macro Commands

Macros may also contain key names that represent keyboard keys (such as TAB,
DOWN, and F5 (GOT0)), and commands similar to those found in programming
languages. When you enter these macro commands and key names, use the correct
syntax; 1-2-3 cannot perform the macro instructions if the syntax is incorrect.

The format for macro commands and key names is

{KEYWORD}
or
{KEYWORD argument1,argument2,... argumentn}

KEYWORD is the name of a macro command or a key name and is always preceded
by { (open brace). Key names and commands that have no arguments must be
followed by } (close brace). The keyword tells 1-2-3 what action to perform. You can
type keywords in uppercase or lowercase letters, but this book refers to macro
keywords in uppercase letters. For a list of macro keywords, see “Macro Command
Categories” on page 106.

argumentl,argument2,..., argumentn are arguments for the macro command, where
argumentn is the last of several arguments in a list. Arguments provide information
1-2-3 needs to complete the command and perform its task. You can type arguments

Macro Basics 93

in uppercase or lowercase letters; this book refers to arguments in italics. Some
commands have optional arguments (arguments you can omit); this book shows
optional arguments in [] (brackets). The last argument must be followed by } (close
brace).

Macro Command Rules

To include a macro command in a macro, follow these guidelines:

Start and end the macro command in the same cell. (The macro itself can span
many cells in the same column.)

Start the command with { (open brace) and end it with } (close brace).

Type the keyword immediately after the open brace. You can type it in uppercase
or lowercase letters.

Separate the keyword from the first argument (if any) with one space, but do not
type spaces between arguments.

If the command includes two or more arguments, separate the arguments from
one another with argument separators. By default, semicolons and commas are
valid argument separators for macro commands. The examples in this chapter
always use commas. You can, however, use /Worksheet Global Default Other
International Punctuation to set a different argument separator.

Enter any combination of macro commands and keystroke instructions in the
same cell, as long as the total number of characters does not exceed 240.

With the exception of specifying a range address, do not use a comma, semicolon,
or period as part of an argument, unless you enclose the argument in double
quotation marks. Also, do not use a colon or brace as part of an argument, unless
you enclose the argument in double quotation marks.

Argument Types

1-2-3 macro commands accept four types of arguments: condition, location, string,

and value.

Type Description

Condition An expression that evaluates to true or false, or the cell address or range
name of a cell that contains such an expression. The macro evaluates the
condition argument and proceeds according to whether it is true or false.
You can also use a formula or @function, a number, or a range name or cell
address as a condition argument.

Location The address or name of a cell or range, or a formula or @function that

returns a range address or name. A location argument can refer to a
single-cell or multiple-cell range.

(continued)

94 @Functions and Macros Guide

Type Description

String Text (any sequence of letters, numbers, and symbols) enclosed in double

quotation marks, the range address or name of a cell that contains a label,
or a formula or @function that returns a label.

Value A number, the address or name of a cell that contains a number, or a

formula or @function that returns a number.

The following rules apply to argument types:

Use range names to ensure that location arguments are correct even if you insert
or delete rows or columns.

Location arguments in flow-of-control macro commands (listed on page 107) can
be either in the worksheet or in a macro library.

To make sure that 1-2-3 uses an argument as a string, not a value, add :s or :string
to the end of the argument. To make sure that 1-2-3 uses an argument as a value,
add :v or :value to the end of the argument.

Macro commands that require a single cell use the upper left corner cell of a
multiple-cell range.

Macro Location

Use the following information to help you select a worksheet location for the macros
you create:

You can save macros in a worksheet with other data or you can save them in a
special file that contains only macros (a macro library). If you plan to use a macro
with only one worksheet, the simplest approach is to enter the macro in that
worksheet. If you plan to use the macro with a number of worksheets, enter the
macro in a blank worksheet (or any worksheet) and then use Macro Library
Manager to save the macro in a macro library. For more information on creating
and using macro libraries, see Chapter 6 beginning on page 177.

If the macro calls subroutines or branches, put the subroutines or branches near
the calling macro in the worksheet so that you can see both at once, if possible.
If several macros in different worksheet files use the same subroutine, put the
subroutine in a macro library file.

If you enter macros in the same worksheet that contains data, enter the macros
below and to the right of the data. This keeps you from writing over data when
you enter the macros or damaging the macros when you insert or delete rows and
columns in the data area. For example, if the data occupies the range A1..Z240,
put the macro below row 240 and to the right of column Z.

Enter all instructions for a single macro as labels in successive cells in the same
column (unless the macro uses branches or subroutines).

Macro Basics 95

Creating a Macro

To create a macro, you must first identify the steps of the 1-2-3 task you are
automating.

For example, suppose you want to create a macro that sets the width of a column to
15. To create the macro, you must know that the task involves selecting /Worksheet
Column Set-Width, typing 15 as the column width, and pressing ENTER to complete
the command. The macro /WCS15~ performs this task.

Identifying the steps means performing the task once, manually, and noting each key
that you press. In some cases, mapping out the procedure with a flow chart may help
you work out the steps of the task.

To Create a Macro

1. Perform the procedure the macro automates to determine what keystrokes
are necessary.

If you perform the procedure, you can use recorded keystrokes from the learn
range as macro instructions. See “Creating a Macro with the Learn Feature”
beginning on page 104.

2. Move to a worksheet location far away from data (see “Macro Location” on
page 95).

3. Enter the macro name in an empty cell.

The macro name provides helpful information about what the macro does.
The name is not necessary to run the macro.

4. Enter the first macro instruction as a label in the cell to the right of the name.
(If the macro is short, enter the entire macro in this cell.) Use keystrokes, or
macro commands, or both.

Keystrokes — type a label-prefix character if the first keystroke is a menu
command, number, numeric character, \ / < + <> <= $ # @ - . (§;then
type the keystroke(s).

Macro commands — enter the macro keyword using the syntax described in
“Macro Commands,” on page 93. While you are entering a macro, you can also
press F1 (HELP) for an explanation of the macro command’s syntax.

5. Enter any subsequent instructions in the cells immediately below the first
instruction.

6. Enter subroutines and branch macros as necessary in adjacent columns or below
the end of the macro. Provide a blank row between the end of the macro and the
first cell of the subroutine. Enter the name of each subroutine or branch macro in
the cell to the left of its top cell.

96 @Functions and Macros Guide

7. Enter the keyword {QUIT} or leave a blank cell after the last line of the macro to
end the macro. (If you are creating a macro subroutine, enter the keyword
{RETURN} after the last line of the subroutine.)

8. Name the macro and the subroutines and branch macros. (See “Naming a
Macro” on page 98.)

The following illustration shows two macros and a subroutine entered in a single

column.
A single-cell macro
A9: 'FORMAT READY
5 B D E F G H <
1 /ucs15™ 4
2 F'S
3 \f {GOTO)QUARTERT" Y
é CFORMAT) k4 A multiple-cell macro
{GOTOYQUARTER2™
6 CFORMAT} _J
7 -
! i :
B FORMAT /RFC2™"
10 {RETURN)
"
A subroutine

Tips for Creating a Macro

* Specify consecutive keystroke instructions by following the key name with a
number. For example, {UP 5} moves the cell pointer up five rows. Separate the
number from the key name with a space.

Alternatively, you can include a cell reference (address, range name, or a formula
that returns a number) after the key name. For example, {DOWN SOME} moves
the cell pointer down the number of rows specified by the value in the cell named
SOME.

* Use range names when specifying worksheet locations in a macro. If you move a
range (for example, if you insert some rows above the range), a macro that refers
to the range by name will continue to work correctly, but a macro that refers to the
range by address may not (for example, a macro that uses absolute cell addresses
in formulas).

* Use {} (open and close braces with nothing inside them) as placeholders in a
macro. 1-2-3 ignores { } instructions when running a macro.

* Create several macros and name them all at once. Enter the macros in the same
column (with at least one blank cell between them), and enter the name of each
macro to the left of the macro’s starting cell. Position the cell pointer in the
column that contains the names. Then select /Range Name Labels Right and
specify this column of names to assign them to all the macros at once.

Macro Basics 97

o Create an auto-execute macro by naming the macro \0. If the Auto-exec Macros
on check box is marked in the Worksheet Global Default Settings dialog box, 1-2-3
runs the auto-execute macro when you retrieve the file or load the macro library.

e Create libraries of macros using Macro Library Manager (see Chapter 6 beginning
on page 177). Then, when you load a macro library into memory, you can use the
macros in the library with any worksheet.

Naming a Macro

After you enter a macro, assign the macro a range name. To name a macro, name the
first cell of the macro with /Range Name Create or /Range Name Labels. Name
subroutines the same way you name macros. You use the range name to run the
macro. (See “Running a Macro” on page 99.)

Macro range names can consist of any combination of up to 15 characters. Like any
other range name, however, they should not duplicate cell addresses; they should not
include spaces, commas, semicolons, periods, or mathematical symbols; and they
should not duplicate @function names, macro command keywords, or 1-2-3 key
names. For more information, see “Using Named Ranges” in Chapter 3 of the User’s
Guide.

You will often want to start macro range names with the same character, such as \
(backslash). Using a naming convention lets you quickly distinguish macro range
names from other range names and is helpful in distinguishing macros you plan to
store in a macro library. For details about macro libraries, see Chapter 6, beginning
on page 177.

To Name a Macro
1. Select /Range Name Create.

2. Specify the macro’s name (up to 15 characters) as the range name. 1-2-3 accepts
two kinds of macro names:

Backslash names consist of a backslash followed by a single letter, such as \D.
You start this macro by pressing ALT and the letter that follows the backslash.
(See “Running a Macro” on page 99.) If you name a macro \0 (zero), you create
an auto-execute macro that executes automatically every time you retrieve the
worksheet file (for more information, see “Auto-execute Macros” on page 100).

Multiple-character names are ordinary range names. Specify a name that
reminds you of what the macro does.

3. Specify the first cell of the macro as the range to name.

If you will later move the macro around the worksheet, specify the entire macro
as the range, not just the first cell. You can then use the range name when
moving the macro.

98 @Functions and Macros Guide

Documenting a Macro

After entering and naming a macro, document the macro’s range name and the
macro instructions. This documentation identifies which range name belongs to the
macro (useful in a worksheet that contains many named ranges); clarifies the macro’s
purpose; and describes the macro’s steps.

* Document the macro’s range name by entering the name as a label to the left of
the first cell of macro instructions. If the name starts with a backslash, such as \N,
type a label prefix (" ” or *) before you type the range name.

* Document the macro instructions by entering comments to the right of the cell or
cells that contain the macro.

B5: [W151 '/rfc sales™ READY
L masa D E F G :
/rfc”sales™ | | Format the SALES r as currency -
A= | Enter a dashed Line in the current cell Y .
i Move down to the next row ————3%——— Macro documentation
Ssun(sales)’] | Total the SALES range
Irfc™™ Format the total as currency

Macro
Macro range name

Running a Macro

Running a macro means starting the macro so it carries out the task it automates.
If it performs as expected, you can use the macro at any time during the current
1-2-3 work session. To use the macro in future sessions, save the worksheet.

You run a macro in one of two ways: with ALT or with ALT-F3 (RUN). The method you
use depends on the macro’s name. You can run any backslash macro with ALT when
1-2-3is in READY mode, EDIT mode, or during a command (MENU or POINT
mode). However, ALT-F3 (RUN) only works in READY mode.

1-2-3 runs a macro by performing the commands in the first cell of the macro, then
the commands in the next cell in the same column, and so on down the single
column. 1-2-3 ends the macro when it reaches a cell that does not contain a label.

CAUTION Use /File Save to save your work before you run the macro. If the
macro produces unexpected results, you can then use /File Retrieve to retrieve the
original version of the worksheet. If undo is on and no add-in program is attached,
you can press ALT-F4 (UNDO) immediately after the macro is finished to restore your
original worksheet.

Macro Basics 99

To Run a Backslash Macro

1. Hold down ALT and then press the letter of the macro range name.

For example, to run a macro named \N, press ALT-n. 1-2-3 runs the macro.

To Run a Range Name Macro
1. Make sure that 1-2-3 is in READY mode.

2. Press ALT-F3 (RUN).

1-2-3 displays a menu of all range names in the worksheet (including macro
range names and backslash macros) and in any macro libraries in memory. If you
have many range names, press F3 (NAME) to see a full-screen menu. Highlight a
macro range name in the full-screen menu to see the range address or the macro
library name (if the range name is in a macro library in memory).

3. To specify the macro to run, do one of the following:
e Type the macro range name or address and press ENTER.
e Highlight the macro range name in the list of range names and press ENTER.
e Click the macro range name in the list of range names.

e Press ESC to switch 1-2-3 to POINT mode, move the cell pointer to the first cell
of the macro, and press ENTER.

Auto-execute Macros

An auto-execute macro is a macro that 1-2-3 runs automatically when you retrieve
the worksheet file that contains it. An auto-execute macro is useful in custom
applications and for worksheet files that you use often.

An auto-execute macro is like any other macro, except that you give it a special name:
\0 (zero). 1-2-3 runs the auto-execute macro whenever you retrieve the file that
contains it, if the current session has the Auto-execute Macros on check box marked
in the Worksheet Global Default Settings dialog box.

You can retrieve files while running a macro from a macro library. If you mark the
Auto-execute Macros on check box in the Worksheet Global Default Settings dialog
box and the file contains an auto-execute macro, 1-2-3 will run the auto-execute
macro. Otherwise, 1-2-3 continues to execute the original macro in the macro library.
You can also load a macro library automatically.

If you run a macro that uses /File Retrieve in the worksheet where the macro is
currently running, the macro ends as soon as the new file is retrieved as long as the
new file does not contain an auto-execute macro with the Auto-execute Macros on
check box marked.

100 @Functions and Macros Guide

Canceling a Macro

Press CTRL-BREAK to cancel a macro while it is running. Unless the macro contains a
{BREAKOFF} or an {ONERROR} command, 1-2-3 stops the macro after it completes
the current macro instruction. After interrupting a macro, press ESC or ENTER to clear
the error message and return 1-2-3 to READY mode. You can then resume working
with 1-2-3.

For more information, see (BREAKOFF} and {BREAKON} on page 118.

Recalculation During Macros

When you run a macro with the worksheet recalculation method set to Automatic,
1-2-3 does not recalculate all data continuously. Automatic recalculation occurs if
you enter data in the worksheet in response to a {?} command, if the macro enters
data, or if you followed a command such as {LET} or {GET} with a ~ (tilde) to
represent ENTER (which 1-2-3 interprets as user input).

For example, suppose your macro has several {LET} commands, but no user data
entry in response to a {?} command. If other macro commands use a formula cell that
references the cell that contains the {LET} command, you need to recalculate the
worksheet. You can recalculate the worksheet by following the last {LET} command
with a ~ (tilde) or by including a {CALC} command.

Dialog Boxes in Macros

When you run a macro, 1-2-3 does not display dialog boxes. Dialog boxes appear
only if you use {WINDOW} in your macro. 1-2-3 suspends the macro when a dialog
box appears, if you use {EDIT} to switch to SETTINGS mode. When you select OK or
press ENTER, 1-2-3 uses the values you specified in the dialog box and continues to
run the macro.

Debugging a Macro

If, when you run a macro, it does not perform as you expected it to, or if 1-2-3 does
not finish running it because of an error, you need to debug the macro — find out
which macro instructions are causing the problem and edit them.

Sometimes you can identify the faulty instructions by looking at the results of the
macro. For example, if a macro makes a typographical error when entering a label in
a cell, look for the same typographical error in the macro instructions.

Often, however, it is more difficult to resolve the problem. In these instances, use the
following troubleshooting checklist to identify possible solutions. If you still cannot
figure out the problem, go through the macro in STEP mode, as explained in
“Debugging a Macro in STEP Mode” on page 102.

Macro Basics 101

Troubleshooting Checklist

If 1-2-3 displays an error message when you run a macro, press F1 (HELP) while the
error message is on the screen to get an explanation of the message. When you are
done using the Help system, press ESC or ENTER to clear the error message. Then
move to the macro and look for the problem. Here are some common mistakes made
when entering macro instructions:

O Typing or spelling errors, including incorrect spelling of keywords and range
names

[J Spaces where they shouldn’t be, especially between arguments, or missing spaces
between keywords and arguments

O Incorrect or incomplete menu command sequences, for example a missing tilde in
/rfp0~ instead of /rfpO~~

O

Missing braces, or brackets or parentheses instead of braces, for example, [up] or
(up) instead of {up}

A blank cell or a cell that contains a number before the end of the macro
Missing or incorrect arguments or argument separators

Incorrect cell or range references, such as undefined or unacceptable range names

O 000

Range names that duplicate keyword names or function-key names

Macro error messages include the location of the instruction 1-2-3 was performing
at the time it encountered the error. Check the cell cited in the error message for
typographical errors, missing braces or tildes, or anything else listed in the
troubleshooting checklist.

If you find no problems in the referenced cell, check to see if a macro instruction in
a cell above it could have caused the problem. For example, if 1-2-3 reports an error
in a cell that apparently contains none, but the cell does contain a range name
assigned at an earlier point in the macro, check the cell that contains the range name
assignment instructions to see whether you spelled the range name the same way in
both places.

When you find the error, move the cell pointer to the appropriate cell, press F2 (EDIT),
correct the error, and press ENTER.

Debugging a Macro in STEP Mode

The instructions that cause an error in a lengthy or complicated macro may not be
easy to find. To help you diagnose problems in a macro, 1-2-3 has a feature called
STEP mode. STEP mode lets you run a macro one instruction at a time, until you
locate the error.

102 @Functions and Macros Guide

To Use STEP Mode

1. When 1-2-3 is waiting for you to press a key or when 1-2-3 is in READY mode,
press ALT-F2 (STEP) to turn on STEP mode.

The STEP indicator appears in the status line at the bottom of the screen.

2. Start the macro using one of the methods described in “Running a Macro” on
page 99.
1-2-3 displays the cell address of the current macro instruction and the contents
of the cell in the status line.

3. Press a key (the space bar is recommended, but you can press any key) to run
the first macro instruction.

4. Repeat step 3 as many times as necessary to find the part of the macro that
contains the error.

Each time you press a key, 1-2-3 performs the next instruction in the macro and
replaces the status line with the cell address of the macro instruction and the
cell’s contents. 1-2-3 also highlights the current macro instruction (the one that
will run).

If the instruction is not enclosed in { } (braces), such as an @function or label, each
time you press a key, 1-2-3 steps through one character of the @function or label.
If the macro pauses for user input, a blinking SST indicator also appears to
remind you that you are in STEP mode.

If you’re using STEP mode with a macro in a library (see Chapter 6, beginning
on page 177), you see the macro library name instead of a range address. If the
library is protected with a password, however, you see only the library name, not
the contents of the macro.

5. Once you find the error, end the macro by pressing CTRL-BREAK.

When you end the macro to edit it, the STEP indicator reappears to remind you
that STEP mode is still on. You do not need to turn off STEP mode to edit the
macro.

6. Edit the macro to correct the problem.

7. Run the macro in STEP mode again if you need to locate the source of other
problems.

8. Press ALT-F2 (STEP) to turn off STEP mode.
9. Press any key to continue the macro.

NOTE You can turn STEP mode on or off during a macro. To do so, press
ALT-F2 (STEP) when 1-2-3 is waiting for input during an interactive command.

Macro Basics 103

Creating a Macro with the Learn Feature

In addition to typing macros directly into the worksheet, you can use the 1-2-3 learn
feature to create a macro. When you use this feature, 1-2-3 records your keystrokes
in a learn range, a single column range that you define.

Use the learn feature to record a macro and test it at the same time. Because you are
performing the procedure that the macro will automate, you can see on the screen
exactly what will happen when the macro runs. The learn feature also minimizes
syntax errors because it records keystrokes in the correct format. You simply press
keys and respond to the menus and prompts as they appear.

1-2-3 records all your keystrokes in the learn range; you do not enter anything into
the learn range directly. If you type more characters than 1-2-3 can enter in the learn
range you specified, 1-2-3 turns off the learn feature and tells you the learn range is
full. If the task you were recording used only a few keystrokes, you can make the
learn range larger, erase its contents with /Worksheet Learn Erase, and start again.
If the task was long, just make the learn range larger and start again where you left
off. 1-2-3 also turns off the learn feature and cancels the learn range if you delete the
column that contains the learn range.

1-2-3 records keystrokes in macro instruction format. For example, when you press
F5 (GOTO), type a5, and press ENTER, 1-2-3 records {GOTO}a5~. 1-2-3 abbreviates
keystrokes (for example, (D) instead of {DOWN}), and uses a number for duplicate
keystrokes (for example {D 2}, instead of {D}{D}).

1-2-3 does not record 1-2-3 mouse actions, actions in a dialog box, or the following
keys in the learn range: ALT-F1(COMPOSE), ALT-F2 (STEP), ALT-F3 (RUN), ALT-F4 (UNDO),
ALT-F5 (LEARN), CTRL-F1 (BOOKMARK), CTRL-BREAK, SHIFT, NUM LOCK, CAPS LOCK,
PRINT SCREEN, or SCROLL LOCK. Learn records HELP (F1), but it will not record any
keystrokes you enter while using Help.

The learn range does not use any memory until you start recording keystrokes.

To Record Keystrokes
1. Select /Worksheet Learn Range.

2. Specify a single column range in an empty part of the worksheet where the
macro cannot interfere with data.

Specify a column with a large number of blank cells for the learn range so 1-2-3
doesn’t run out of space when recording your keystrokes.

3. Move the cell pointer to the cell where you want to start the task.
4. Presss ALT-F5 (LEARN).

The LEARN indicator appears at the bottom of the screen. As long as the LEARN
indicator remains on the screen, 1-2-3 records each of your keystrokes in the learn
range.

104 @Functions and Macros Guide

5. Perform the task or series of tasks you want to record.

If you want to include another macro in the one you're recording, enter its range
name in { } (braces), for example, {TOTAL}. When you run the macro, 1-2-3 runs
the macro you included and then returns control to the original macro. For more
information, refer to the description of {subroutine} on page 158.

6. When you finish the task, press ALT-F5 (LEARN) again to stop recording keystrokes.

J26: " /ppriHOME}.. (R 4){END}{DOWN)~agpq READY

1 EEEEE K L M N 0 P 4
2 : >
25 i A .
/ppr{HOMEY.{R 4}{END}-{DOMN} "agpq ; A macro recorded in
58 the learn range
29

To Edit Keystrokes

When you finish recording keystrokes, move the cell pointer to the learn range and
examine the recorded keystrokes. If you made mistakes while performing the task,
1-2-3 recorded them, so edit them before going any further. As you edit, be sure not
to leave any empty cells or values in the middle of the macro or 1-2-3 will interpret
them as the end of the macro.

If you made many mistakes and want to start over, erase the learn range with
/Worksheet Learn Erase and record the keystrokes again.

To Name and Run a Macro Created with Learn

1. Name the macro by assigning it a range name, as described in “Naming a Macro”
on page 98.

2. Depending on how you named the macro, run it by using either ALT or ALT-F3
(RUN). See “Running a Macro” on page 99.

3. If the macro isn't working as you expected it to, debug and edit it as explained
in “Debugging a Macro” on page 101.

4. Save the worksheet to save the macro.
Keep the following information in mind when you use the learn feature:

* You can save a macro created with the learn feature in a macro library. For
information about macro libraries, see “Saving Macros in a Library” on page 183.

* Avoid using /Range Justify to make a macro created in a learn range more
compact. When you use /Range Justify, 1-2-3 inserts a space in front of each
keystroke that it moves up from the row below. These spaces will alter the way
the macro works.

Macro Basics 105

Macro Command Categories

1-2-3 macro commands fall into six categories.

Category

Description

Data manipulation

File manipulation
Flow-of-control

Interactive

Macro key names
Screen control

Enter data, edit existing entries, erase entries, and recalculate
data.

Work with text files.

Direct the path of a macro to branch, call subroutines, loop,
and process conditionally.

Suspend running a macro for user input, control the timing of a
macro, and prevent the user from stopping a macro.

Replicate actions of the nonprinting keys.

Control the screen display, control the mode indicator, sound
various tones, and clear control panel prompts.

The following sections list macro keywords by category. Chapter 4, beginning on
page 111, lists each macro command in alphabetical order.

Data Manipulation

These commands enter, copy, edit, erase, and recalculate data.

Macro instruction

Description

{APPENDBELOW}
{APPENDRIGHT}

(BLANK]
{CONTENTS}
{LET}

{PUT}
{RECALC}
{RECALCCOL}

Copies a range of data to the bottom of a second range. For a
named range, extends the second range to include the data.

Copies a range of data to the right of a second range. For a
named range, extends the second range to include the data.

Erases a cell or range.

Copies the contents of a cell to another cell as a label.
Enters a label or number in a cell.

Enters a label or number in a range.

Recalculates formulas row by row.

Recalculates formulas column by column.

106 @Functions and Macros Guide

File Manipulation

These commands work with text files (also called print files or ASCII files).

Macro instruction

Description

{CLOSE} Closes the open text file.
{FILESIZE} Determines the number of bytes in the open text file and records
the number in a cell.
{GETPOS} Determines the file pointer’s position in the open text file and
records that position in a cell.
{OPEN} Opens a new or existing text file.
{READ} Copies data from the open text file to a cell.
{READLN} Copies a line from the open text file to a cell.
{SETPOS} Repositions the file pointer in the open text file.
{WRITE} Writes a string to the open text file.
{WRITELN} Writes a string to the open text file and adds an end-of-line
sequence.
Flow-Of-Control

These commands direct the path of a macro using subroutines, branches, calls,
for-loops, and conditional processing.

Macro instruction

Description

{subroutine}

{BRANCH}
{DEFINE}
{DISPATCH}
{FOR}

{FORBREAK}
{IF}

{ONERROR}

{QuIT}

Calls a subroutine. The subroutine is a range name that you
assigned. Runs the subroutine before running the rest of the
original macro. When the subroutine finishes, returns control to
the command after {subroutine}.

Transfers macro control from the current column of macro
instructions to another location.

Evaluates and stores information that you pass to a subroutine in
a {subroutine} command.

Branches by transferring macro control to the branch location
specified in a cell.

Creates a for-loop: repeats a subroutine or a series of
instructions a specified number of times.

Cancels a for-loop.

Evaluates a condition and continues depending on the results:

if the condition is true, continues with the macro instructions that
follow {IF} in the same cell; if it is false, goes directly to the
instructions in the next cell.

Branches if an error occurs while a macro is running, so the macro
continues instead of terminating at the error.

Ends a macro, returning keyboard control to the user.

(continued)

Macro Basics 107

Macro instruction

Description

{RESTART}

(RETURN}

(SYSTEM}

Keeps 1-2-3 from returning to the location from which the
subroutine call was issued. When {RETURN} or a blank cell
is encountered, the macro ends. Used in subroutines.

Ends a subroutine and returns control to the instruction
following the command that called it. In a for-loop, ends the
current repetition immediately and starts the next repetition.

Temporarily suspends 1-2-3 and passes a command to the
operating system. When the command is completed, resumes
the 1-2-3 session and continues the macro

Interactive

These commands suspend the running of a macro for user input, control macro
interruption and the timing of the macro, and create custom prompts.

Macro instruction

Description

{7

{BREAK}

{BREAKOFF}
{BREAKON}
{FORM}
{FORMBREAK]
{GET}
{GETLABEL}

{GETNUMBER}

{LOOK}

{MENUBRANCH}

Suspends the running of a macro to let you move the cell pointer,
enter data, or select commands. Returns control to the macro
when you press ENTER.

Issues a CTRL-BREAK (equivalent to pressing ESC one or more
times in a menu), so you can return 1-2-3 to READY mode and
continue the macro.

Disables CTRL-BREAK while a macro is running, so the macro
cannot be interrupted.

Restores CTRL-BREAK, undoing a {BREAKOFF} command.
Suspends the running of a macro so you can enter and edit data
in a specified range. Similar to Range Input, but provides more
control over allowable keystrokes.

Ends a {FORM} command.

Suspends the running of a macro until you press a key and then
records that keystroke in a cell.

Displays a prompt in the control panel, waits for a response to
the prompt, and enters the response as a label in a cell.

Displays a prompt in the control panel, waits for a response to
the prompt, and enters the response as a number in a cell.

Checks the computer’s typeahead buffer (the buffer in which
1-2-3 stores keystrokes during noninteractive parts of a macro)
and records the first keystroke (if any) the buffer contains in a cell.

Displays a customized menu in the control panel, waits for you
to select a menu item, then branches to the macro instructions
associated with that menu item.

(continued)

108 @Functions and Macros Guide

Macro instruction

Description

{MENUCALL} Displays a customized menu in the control panel, waits for you
to select a menu item, and then runs the macro instructions
associated with that menu item as a subroutine.

{WAIT} Suspends running a macro and displays the WAIT indicator until
the time you specify.

Key Names

The table below lists the macro keywords that correspond to the standard keyboard

keys and the 1-2-3 function keys.

Key Macro key name
l {DOWN} or {D}

T {UP} or {U}

« {LEFT} or {L}

N {RIGHT} or {R}

} (close brace) {}}

{ (open brace)

/ (slash) or < (less-than symbol)
~ (tilde)

ALT-F7 (APP1)

ALT-F8 (APP2)

ALT-F9 (APP3)

ALT-F10 (APP4)

BACKSPACE

CTRL-¢— (BIG LEFT) or
SHIFT-TAB (BACKTAB)

CTRL-— (BIG RIGHT) or TAB
DEL

END

ENTER

ESC

F1 (HELP)

F2 (EDIT)

F3 (NAME)

F4 (ABS)

F5 (GOTO)

F6 (WINDOW)

{{}

/, <, or {MENU}

{~}

{APP1}

{APP2}

{APP3}

{APP4}
{BACKSPACE} or {BS}
{BIGLEFT}

{BIGRIGHT}
{DELETE} or {DEL}
{END}

{ESCAPE} or {ESC}
{HELP}

{EDIT}

{NAME}

{ABS}

{GOTO}
{WINDOW}

(continued)

Macro Basics 109

Key Macro key nhame

F7 (QUERY) {QUERY}

F8 (TABLE) {TABLE}

F9 (CALQO) {CALC}

F10 (GRAPH) {GRAPH}

HOME {HOME}

INS {INSERT} or {INS}
PG UP {PGUP}

PG DN {PGDN}

Screen Control

These commands control different parts of the screen display, including the mode
indicator, and sound the computer’s bell.

Macro instruction Description

{BEEP} Sounds a tone of specified frequency and duration.

{BORDERSOFF} Turns off display of the worksheet column letters and row numbers.
(Works the same as {FRAMEOFF}.)

{BORDERSON} Restores display of the worksheet column letters and row numbers,
undoing {BORDERSOFF}. (Works the same as {FRAMEON}.)

{FRAMEOFF} Turns off display of the worksheet column letters and row numbers.
(Works the same as {BORDERSOFF}.)

{FRAMEON} Restores display of the worksheet column letters and row numbers,
undoing {FRAMEOFF}. (Works the same as {BORDERSON}.)

{GRAPHOFF} Removes a graph displayed by {GRAPHON} and redisplays the
worksheet.

{GRAPHON} Without suspending the macro, creates a full-screen view of

the current graph or makes a named graph the current graph
(with or without displaying the graph).

{INDICATE} Changes the mode indicator to the string you specify or restores
the standard mode indicator.

{PANELOFF} Freezes the control panel either in its current state or after
clearing it.

{PANELON} Unfreezes and displays the control panel, undoing {PANELOFF}.

{WINDOW} Turns the display of dialog boxes on or off.

{WINDOWSOFF} Freezes the worksheet area of the screen.

{WINDOWSON} Unfreezes the worksheet area of the screen, undoing
{WINDOWSOFF}.

110 @Functions and Macros Guide

Chapter 4
Macro Command Descriptions

This chapter lists the macro commands alphabetically by keyword. Each macro
command is described in detail and includes one or more examples to show its
syntax and use. Descriptions of the macro commands use the following conventions:

* Macro commands appear in uppercase letters except for the {subroutine} command
(subroutine is not the keyword; you must replace subroutine with the name of the
subroutine you want to run). You can use either uppercase or lowercase letters
when you enter a macro command.

* Argument names for which you must supply information appear in lowercase
italics. Substitute the type of information the argument type requires.

* Actual arguments used in examples are not italicized.

¢ Inthe examples, ... (ellipses) indicate that the macro example is an excerpt from
a longer macro.

¢ Range names appear in uppercase.

* Anargument that requires a value can be either a number or a formula that
results in a number. A string argument can be either text, or a formula that results
in text. A location argument can be a range name or address, or a formula that
results in a range name or address.

{?}

{?} (pause) suspends further execution of the macro until you press ENTER, letting
you type any number of keystrokes.

Uses

Use {?} to stop the macro temporarily. You can then move the cell or menu pointer,
complete part of a command, or enter data for the macro to process. The macro
continues when you press ENTER.

Notes

When you press ENTER, 1-2-3 ends the {?} (pause) command and continues the macro.
1-2-3 does not enter data or complete a menu command, unless the next character in
the macro is a ~ (tilde) or, in READY mode, a pointer-movement key name (for
example {DOWN}).

111

Examples

The following macro selects /Range Format Currency with two decimal places and
pauses so you can specify the range to format. After you specify the range, 1-2-3
formats the specified range as Currency, with two decimal places.

" /rfc2~{?}~

The following macro moves the cell pointer to the cell named ERR_MSG, which
contains an error message, and pauses to let you read the message. When you press
ENTER, the macro continues.

{GOTOJERR_MSG~
{7}
{HOME}

{~}

{~} (tilde) lets you enter a ~ (tilde) that 1-2-3 does not interpret as ENTER.

{{} and {}}

{{} and {}} let you enter { (open brace) and } (close brace) without 1-2-3 interpreting
them as a macro command.

{ABS}

{ABS [numberl} is equivalent to pressing F4 (ABS). For more information about 1-2-3
function keys, see the Quick Reference.

Argument

number is an optional argument that tells 1-2-3 how many times to press F4 (ABS).
number is a value, the address or name of a cell that contains a value, or a formula
that returns a value. {ABS} without an argument is equivalent to {ABS 1}.

Notes

Use {ABS} to cycle through absolute references and to specify ranges prior to
selecting commands.

112 @Functions and Macros Guide

{APP1}, {APP2}, {APP3}, and {APP4}

{APP1}, {APP2}, {APP3}, and {APP4} invoke add-in programs.

Notes
{APP1}, {APP2}, {APP3}, and {APP4} are equivalent to the following keys.

Macro name Description

{APP1} Invokes the add-in program assigned to ALT-F7.

{APP2} Invokes the add-in program assigned to ALT-Fs.

{APP3} Invokes the add-in program assigned to ALT-F9.

{APP4} Invokes the add-in program assigned to ALT-F10. If no add-in is

assigned to ALT-F10, {APP4} displays the Add-In menu.

For information about invoking add-in programs, see “Using an Add-In” in Chapter
2 of the User’s Guide. For information about invoking the Macro Library Manager
add-in, see “To Invoke Macro Library Manager” on page 178.

Example

The following macro invokes the Macro Library Manager add-in, if 9 (ALT-F9) was the
key to which you assigned Macro Library Manager.

{APP3}

{APPENDBELOW} and {APPENDRIGHT)

{APPENDBELOW target-location,source-location} copies the contents of source-location
to the rows immediately below the bottom row of target-location.

{APPENDRIGHT target-location source-location) copies the contents of source-location
to the columns immediately to the right of target-location.

Arguments

source-location and target-location are named ranges or range addresses. If you specify
a named range, 1-2-3 expands the target-location after the appended data to include
the rows or columns that contain the added data.

Uses

Use {APPENDBELOW} with /Range Input or {FORM]} to transfer records from an
entry form to a database.

Use {APPENDRIGHT} to add a new field to a database or to add a column of data to
a spreadsheet application.

Macro Command Descriptions 113

Notes

In the following situations, {APPENDBELOW} or {APPENDRIGHT} fails and the
macro stops. 1-2-3 then displays an error message explaining why the macro
stopped.

e When you append more rows or columns than can fit between target-location and
the worksheet boundaries (column IV or row 8192)

o When appending source-location to target-location would write over data
e When cells below or columns to the right of target-location are protected

When source-location contains formulas, {APPENDBELOW! or {APPENDRIGHT}
copies the current values of the formulas to target-location, not the formulas
themselves.

In {APPENDBELOW]}, if any range’s last row is also the last row of target-location,
that range name will be expanded to accommodate the appended data. In
{APPENDRIGHT}, if any range’s right column is also the right column of
target-location, that range will be expanded to accommodate the appended data.

To use {APPENDBELOW} or {APPENDRIGHT} from a macro library, source-location
and target-location must be worksheet ranges.

Example

The following macro lets you enter new employee information in an unprotected
range named NEWEMP. NEWEMP is in an entry form named EMPFORM. The
macro appends the information in NEWEMP to the employee database named
EMPDB and expands EMPDB to include the new record.

{BLANK NEWEMP}~
{FORM EMPFORM}
{APPENDBELOW EMPDB,NEWEMP}

D9: 'London READY
A B c N
1 >
2 'S
2 Enter employee record below using arrow keys. ;
5
6
; LAST NAME FIRST NAME DEPARTMENT LOCATION Entry form EMPFORM
?Eﬂfimton Andrew International Marketing London |

Source range NEWEMP

114 @Functions and Macros Guide

<4

>

&

v

T
Target range
EMPDB after
{APPENDBELOW}

Target range EMPDB before {APPENDBELOW}

{BACKSPACE} and {BS}

{BACKSPACE [number]} and {BS [number]} are equivalent to pressing BACKSPACE.

Argument

number is an optional argument that tells 1-2-3 how many times to press BACKSPACE.
number is a value, the address or name of a cell that contains a value, or a formula
that returns a value. {BACKSPACE} without an argument is equivalent to
{BACKSPACE 1}.

{BEEP}

{BEEP [tone-number]} sounds one of four tones.

Argument

tone-number is an optional argument that tells 1-2-3 which of four tones to sound.
tone-number must be a value, the address or name of a cell that contains a value, or

a formula that returns a value. If you use a number other than 1, 2, 3, or 4 for
tone-number, 1-2-3 divides the number by four and uses the remainder as tone-number
(if the remainder is 0, 1-2-3 sounds tone 4). For example, {BEEP 7} is equivalent to
{BEEP 3}. {BEEP} without an argument is equivalent to {BEEP 1}.

Uses

Use {BEEP} to get the user’s attention: to signal the end of a macro or the end of a
waiting period (see (WAIT] on page 162), to alert a user to an on-screen message, or
to signal the beginning of an interactive command.

Notes

{BEEP} does not produce a tone when the computer sounds are turned off with
/Worksheet Global Default Other Beep No.

Macro Command Descriptions 115

Examples

The following excerpt from a macro sounds two tones to draw attention to the
subsequent interactive command.

{BEEPH{BEEP 4}
{7}

The following macro sounds a tone to draw attention to the information displayed
in cell ERR_MSG. The tone of the bell depends on the cell named ERR_TONE.

{GOTOJERR_MSG~
{BEEP ERR_TONE}

The following macro ends with three (BEEP} commands that sound the same tone

three times to signal the macro’s end.

(BEEP 3}{BEEP 3}{BEEP 3}{QUIT}

{BIGLEFT} and {BIGRIGHT}

{BIGLEFT [number]} is equivalent to pressing CTRL-<— or SHIFT-TAB. {BIGRIGHT
[number]} is equivalent to pressing TAB or CTRL-—.

Argument

number is an optional argument that tells 1-2-3 how many times to press CTRL-<—
or TAB. number is a value, the address or name of a cell that contains a value, or a
formula that returns a value. {BIGLEFT} or {BIGRIGHT} without an argument is
equivalent to (BIGLEFT 1} or {BIGRIGHT 1}.

{BLANK]}

{BLANK location) erases the contents of location. {BLANK]} does not change the
format of the cells in location.

Argument

location is the address or name of a cell or range.

Notes

{BLANK] is similar to /Range Erase, but it is faster and does not force recalculation.

To see the result of a {BLANK} command, follow {BLANK} with a command that
redraws the screen (for example, {D} or ~), or with a {CALC} command.

116 @Functions and Macros Guide

Example
The following macro erases the contents of the range named DATARANGE.

{BLANK DATARANGE}

{BORDERSOFF} and {BORDERSON}

{BORDERSOFF} and {BORDERSON] are identical to {FRAMEOFF} and
{FRAMEON]}. Refer to the descriptions of {FRAMEOFF} and {FRAMEON]} on
page 133.

{BRANCH)

{BRANCH location} transfers macro control from the current macro instruction to
location and does not return to the calling macro.

Argument

Location is the address or name of another macro or subroutine. If you specify a
range, 1-2-3 branches to the first cell in the range.

Uses

Use (BRANCH]} with {IF} to implement if-then-else processing or to transfer control
to another macro.

Use {BRANCH} to create a loop by branching to a cell above the {BRANCH]}
command in the same macro. This structure is useful for repetitive data entry tasks.

Notes

{BRANCH] is not the same as {GOTO}. {GOTO} moves the cell pointer to another
cell. {BRANCH] transfers macro execution to the commands that begin in location.

{BRANCH] is one-way; you can return from a {BRANCH] to the calling macro only
by branching back to it with a {BRANCH} command or a {DISPATCH} command in
the instructions at location. {DISPATCH]} branches indirectly out of the current macro
by branching to the address or range name specified in location. To branch out of the
current macro and then return to it, use {subroutine}. {subroutine} automatically
returns control to the calling macro once the subroutine is completed.

Examples

The following macro transfers control to either the macro named BIG or the macro
named SMALL, depending on the value in the cell named SIZE.

{IF SIZE>100}{BRANCH BIG}
{BRANCH SMALL}

Macro Command Descriptions 117

The following macro transfers control to the current cell.

{(BRANCH @CELLPOINTER(“address”)}

{BREAK]}

{BREAK] clears the control panel and returns 1-2-3 to READY mode.

Uses

Use {BREAK] at the beginning or a macro to ensure that the macro runs, even if a
user runs it while entering data or selecting a 1-2-3 command.

Example

{BREAK] has the same effect as pressing ESC several times to leave a menu. {BREAK]
does not stop a macro. To stop a macro, press CTRL-BREAK.

Example

The following macro leaves the current menu and displays a range named
MYSCREEN.

{BREAKH{GOTOIMYSCREEN~

{BREAKOFF} and {BREAKON}

{BREAKOFF} prevents you from canceling a macro with CTRL-BREAK.

{BREAKON} restores the operation of CTRL-BREAK, undoing a {BREAKOFF]
command.

Uses

Normally, you can stop a macro while it is running by pressing CTRL-BREAK. While
{BREAKOFF} is in effect, however, CTRL-BREAK does not stop the macro. Use
{(BREAKOFF) to keep users from stopping a macro to alter data or look at restricted
data in a protected application.

Notes

{BREAKOFF} stays in effect until 1-2-3 performs a {BREAKON} command or until
the macro ends.

If (BREAKOFF] is in effect and the macro goes into an infinite loop, you cannot
return to 1-2-3. To stop the macro, you must restart the computer. In either case,
all data entered or changed since the last time the worksheet file was saved is lost.
For this reason, do not use {BREAKOFF} while designing and testing a macro. To
prevent data loss, precede (BREAKOFF} with /File Save in the macro.

118 @Functions and Macros Guide

{BREAKOFF} and {BREAKON} have no effect on {BREAK]}.

Example

The following excerpt from a macro disables CTRL-BREAK before starting the
PAYROLL subroutine, preventing you from gaining access to proprietary
information by stopping the macro while the PAYROLL subroutine is running.
When the PAYROLL subroutine ends, {BREAKON]} restores CTRL-BREAK for the
rest of the macro.

(BREAKOFF|
(PAYROLL|
{BREAKON]

{CALC}

{CALC [number]} is equivalent to pressing F9 (CALC). For more information about
1-2-3 function keys, see the Quick Reference.

Argument

number is an optional argument that tells 1-2-3 how many times to press F9 (CALC).
number is a value, the address or name of a cell that contains a value, or a formula
that returns a value greater than 1. number specifies the number of times you want
1-2-3 to perform the calculations. {CALC} without an argument is equivalent to
{CALC 1}.

Uses

Use {CALCY} if you use Manual recalculation when running a macro and you need
to control when 1-2-3 recalculates formulas.

Include {CALC] at the end of a macro that uses {RECALC} or {RECALCCOL} to
ensure that 1-2-3 updates all formulas in the worksheet.

If worksheet recalculation is set to manual, use {CALC} before you select / Range
Transpose or /Range Value to make sure the values in the cells you specify are up
to date.

Use {CALC} to see the results of a {BLANK]}, {LET}, {APPENDRIGHT}, or
{APPENDBELOW} command.

Notes

{CALC} does not update linked formulas. Use /File Admin Link-Refresh to update
linked formulas.

Macro Command Descriptions 119

{CLOSE}

{CLOSE} closes a text file that you opened with {OPEN]} (if one is open) and saves
any changes made to the file.

Uses

Use {CLOSE} to close text files when you finish using them. If you don’t include
a {CLOSE} command in a macro that contains an {OPEN} command, the text file
remains open until you end your 1-2-3 work session.

Notes

Only one text file can be open at one time, so using an {OPEN} command when
a text file is already open closes the first text file before it opens the second text file.
You do not need a {CLOSE} command between {OPEN} commands.

Following the {CLOSE}, 1-2-3 continues with the command in the next cell.

Example

The following macro opens a text file named STOCKS with append access (see
{OPEN]} on page 148), adds a line to the file to report the day’s volume for a stock,
and closes the file before ending the macro. (Without the {CLOSE} command,
STOCKS would remain open at the end of the macro, and you could continue
processing STOCKS in a subsequent macro without using an {OPEN} command.)

{OPEN “STOCKS.TXT”,"a”}

{WRITELN “Today’s volume: ”&@STRING(VOLUME,0)}
{CLOSE}

{QUIT}

{CONTENTS}

{CONTENTS target-location,source-location,[width] [cell-format]} copies a value from
source-location to target-location as a label.

Arguments

source-location and target-location are the names or addresses of cells or ranges. If you
specify ranges, 1-2-3 uses the first cells of the ranges.

width is an optional argument that specifies the width of the label that 1-2-3 creates.
width is a value, the address or name of a cell that contains a value, or a formula that
returns a value from 0 through 240.

120 @Functions and Macros Guide

If you copy a value without specifying the optional width and cell-format arguments,
the label 1-2-3 creates in target-location has the same width and format as

source-location.

cell-format is an optional argument that specifies the format of the label 1-2-3 creates.
cell-format must be a value corresponding to a code number, or the address or name
of a cell that contains such a value.

Code number

Format

0 through 15

16 through 31
32 through 47
48 through 63
64 through 79

Fixed, 0 through 15 decimal places
Scientific, 0 through 15 decimal places
Currency, 0 through 15 decimal places
Percent, 0 through 15 decimal places
Comma, 0 through 15 decimal places

112 +/—

113 General

114 D1 (DD-MMM-YY)

115 D2 (DD-MMM)

116 D3 (MMM-YY)

117 Text

118 Hidden

119 D6 (HH:MM:SS AM/PM)

120 D7 (HH:MM AM/PM)

121 D4 (Long International date format)

122 D5 (Short International date format)

123 D8 (Long International date format)

124 D9 (Short International date format)

127 Gilobal cell format (specified with /Worksheet Global Format)
Uses

Use {CONTENTS] to store a value as a label so you can use it in a text formula.
Use {CONTENTS} with the Text format number 117 to obtain a formula as text
rather than its result.

Notes

If you include a cell-format argument, you must include a width argument.

To copy a label from one cell to another, use {LET} instead of {CONTENTS}.

Examples

In the examples that follow, the cell named INCOME contains the formula
+GROSS-EXP, which results in $167.24. INCOME is formatted as Currency, 2

Macro Command Descriptions

121

decimal places, and its column width is 9. In the explanations of the examples, each
bullet represents one space.

{CONTENTS REPORT,INCOME}
+“Today we earned” &REPORT{CALC}~

The macro enters the 9-character label #$167.24¢ in cell REPORT, then creates the
sentence “Today we earned $167.24 ” and enters it in the current cell.

{CONTENTS REPORT,INCOME, 11,117}
+“The formula we use to calculate earnings is: “&REPORT{CALC}~

The macro enters the label +GROSS-EXPe in REPORT (Code 117 is Text format), then
creates the sentence “The formula we use to calculate earnings is:e+GROSS-EXPe”
and enters it in the current cell.

{CONTENTS REPORT,INCOME,3}

The macro places the 3-character label *** in REPORT, because the specified width is
not wide enough to display $167.24.

{DEFINE}

{DEFINE location1 location2,...locationn} specifies where to store arguments for a
{subroutine} command where locationn is the last of several arguments in a list.

Arguments

location is the address or name of a cell or range that is unprotected. If location is a
range, 1-2-3 uses the first cell of the range as the storage location.

Specify a location argument for each argument in the {subroutine} command. If you
do not, 1-2-3 ends the macro when it reaches the {DEFINE} command and displays
an error message.

Uses
Use (DEFINE} at the beginning of any subroutine to which you pass arguments.

Notes

(DEFINE} must be the first macro command in the subroutine.

You can specify the type of data (string or value) that 1-2-3 is to store in location. 1-2-3
stores the subroutine arguments as labels unless you add the suffix :value (or) to
the location arguments.

122 @Functions and Macros Guide

Suffix What it does

:s or :string Stores the argument as a label, even if the argument looks like a number,
formula, or cell or range address.
v or :value Stores the argument as a value.

You can define up to 31 arguments. However, when you use suffixes with {DEFINE},
1-2-3 treats the suffix as an additional argument. This means that you can have up to
15 arguments passed by value to a subroutine.

Examples

The following examples illustrate how to use the {DEFINE} command. The
{subroutine} command in macro \A passes three arguments to SUBR1. The {DEFINE}
command at the beginning of SUBR1 stores the label @NOW in cell ONE, the label
“Closing Price:” in cell TWO, and the label FINAL in cell THREE. The {LET}
commands then enter the labels in three consecutive cells in a row.

\A {SUBR1 @NOW,“Closing Price:”,FINAL}

SUBR1 {DEFINE ONE, TWO,THREE}
{LET @CELLPOINTER(“address”),ONE}{RIGHT}
{LET @CELLPOINTER("“address”), TWO}{RIGHT}
{LET @CELLPOINTER(“address”), THREE}~

The result is a row that contains the date number for today’s date followed by the
labels:

Closing Price: FINAL

The {subroutine} command in macro \B passes three arguments to SUBR2. The
{DEFINE} command at the beginning of SUBR2 evaluates the arguments before
storing them. Thus, it stores the value of the first argument, today’s date, as a
number in cell ONE; the second argument, the string Closing Price:, as a label in

cell TWQO; and the value of the third argument, the contents of the cell named FINAL,
as a number in cell THREE.

SUBR?2 then formats the current cell as DD-MMM and enters the number stored in
cell ONE, moves right one cell and enters the label stored in cell TWO, moves right
one cell again, formats the cell as Currency with two decimal places, and enters the
number stored in cell THREE.

\B {SUBR2 @NOW,“Closing Price:” , FINAL)}
SUBR2 iDEFINE ONE:V,TWO,THREE:V}
/rfd2~~{LET @ CELLPOINTER(“address”),ONEH{RIGHT}

{LET @CELLPOINTER(“address”), TWOHRIGHT}
/rfc2~~{LET @CELLPOINTER(“address”), THREE}

The result is a row that reads (depending on the date and closing price)

01-Apr Closing Price: $9.32

Macro Command Descriptions 123

{DELETE} and {DEL}

{DELETE [numberl} and {DEL [numberl} are equivalent to pressing DEL.

Argument

number is an optional argument that tells 1-2-3 how many times to press DEL. nunber
is a value, the address or name of a cell that contains a value, or a formula that
returns a value. {DELETE} without an argument is equivalent to {DELETE 1}.

{DISPATCH}

{DISPATCH location} transfers macro control to the cell whose address.or name you
specify in the location cell.

Argument

location is a single cell that contains the address or name of the cell to which macro
control is transferred.

Uses

Use {DISPATCH} to have 1-2-3 branch to one of several possible macros, depending
on the contents of location. {DISPATCH]} is particularly useful in macros that change
depending on conditions in the worksheet.

Notes

{DISPATCH]} does not return control to the calling macro. If you want to return
control to the calling macro, use {subroutine}. {subroutine} automatically returns
control to the calling macro once the subroutine is completed.

Example

The following excerpt from a macro sets the label in the cell named SWITCH, and
then transfers macro control to the macro whose name is in SWITCH.

{IF COST<OHLET SWITCH, “negative”}~
{IF COST=0}{LET SWITCH, “zero”}~

{IF COST>0H{LET SWITCH, “positive”}~
{DISPATCH SWITCH}

124 @Functions and Macros Guide

{DOWN} and {D}

{DOWN [number]} and {D [numberl} are equivalent to pressing .

Argument

number is an optional argument that tells 1-2-3 how many times to press L. number is
a value, the address or name of a cell that contains a value, or a formula that returns a
value. {DOWN]} without an argument is equivalent to {DOWN 1}.

{EDIT}

{EDIT} is equivalent to pressing F2 (EDIT). For more information about 1-2-3 function
keys, see the Quick Reference.

Uses
Use {EDIT]} to alter the contents of a cell or to enter SETTINGS mode.

{END}

{END} is equivalent to pressing END.

{ESCAPE} and {ESC}

{ESCAPE [number]} and {ESC [number]} are equivalent to pressing ESC.

Argument

number is an optional argument that tells 1-2-3 how many times to press ESC. number
is a value, the address or name of a cell that contains a value, or a formula that
returns a value. {ESCAPE} without an argument is equivalent to {ESCAPE 1}.

{FILESIZE}

{FILESIZE location} counts the number of bytes in the open text file and stores that
number in location.

Argument

location is the address or name of a cell or range, or a formula that returns the address
or name of a cell or range. If you specify a range, 1-2-3 enters the number in the first
cell of the range.

Macro Command Descriptions 125

Uses

Use {FILESIZE} after every {OPEN} command to determine the size of the file before
the macro reads or writes data.

Notes
Before you use {FILESIZE}, use {OPEN]} to retrieve the text file that you want to use.

Example

The following macro enters in cell MAXBYTES the number of bytes in the open text
file. The {READ} command then copies 72 bytes from the text file into the current cell
and moves down one cell to the next row. The macro then uses {GETPOS} and {IF} to
determine if the byte pointer has reached the end of the file. If the byte pointer has
not reached the end of the file, the macro branches to R_LOOP to read an additional
72 characters of text. When all text has been read, the macro closes the file.

\R {FILESIZE MAXBYTES}
R_LOOP {READ 72,@CELLPOINTER(“address”)}
{DHGETPOS CURRBYTE}

{IF CURRBYTE=MAXBYTES}{BRANCH FILE_CLOSE}
{BRANCH R_LOOP}

{FOR}

{FOR counter,start stop,step,subroutine} creates a for-next loop — it repeatedly
performs a call to subroutine. The start, stop, and step numbers determine the total
number of repetitions, and counter keeps a running count of the repetitions.

Arguments

counter is the address or name of a blank cell where 1-2-3 keeps track of the number
of times the subroutine will run during the for-next loop. counter should be a blank
cell, since anything in counter is replaced.

start is the initial value for counter.
stop is the value that tells 1-2-3 when to terminate the for-next loop.
step is the value added to counter each time 1-2-3 runs the subroutine.

start, stop, and step are values, the addresses or names of cells that contain values, or
formulas that return values.

subroutine is the range address or name of the subroutine that 1-2-3 runs in the
for-next loop.

Uses

Use {FOR] to control the execution of a for-next loop.

126 @Functions and Macros Guide

Notes

1-2-3 evaluates the start, stop, and step values before it runs a subroutine in a for-next
loop. Before each pass through the subroutine, 1-2-3 does the following:

1. Compares the number in counter with the stop number. If the number in counter
has not passed stop, 1-2-3 runs subroutine.

2. Adds step to the number in counter at the end of each pass through the
subroutine. (Initially, the value in counter is set to start).

3. Repeats steps 1 and 2 until counter passes stop. 1-2-3 then ends the for-next loop
and completes the instructions following the {FOR} command.

If step is 0, the number in counter can never exceed the stop number, and the for-next
loop becomes an infinite loop. Press CTRL-BREAK to stop an infinite for-next loop.

You can modify a for-next loop by using range names for start, stop, or step.

Examples

The following examples show different combinations of using a for-next loop to call
a subroutine called FORMAT. The counter is the cell named NUM.

Repeat FORMAT 10 times:
{FOR NUM,1,10,1, FORMAT}
Repeat FORMAT 4 times:
{FOR NUM,1,10,2.5,FORMAT}
Repeat FORMAT 5 times:
{FOR NUM,10,1,-2, FORMAT}
Repeat FORMAT indefinitely (step is 0 so counter never reaches stop):
{FOR NUM,1,10,0,FORMAT}

FORMAT is never called because start (10) is greater than stop (1), and step (2) is
positive:

{FOR NUM,10,1,2, FORMAT}

{FORBREAK]}

{FORBREAK] cancels a for-next loop created by a {FOR} command.

Uses

Use (FORBREAK} to return to the calling macro and perform the instruction
following the {FOR} command.

Macro Command Descriptions 127

Notes

Use {FORBREAK]} only within a for-next loop. Using {FORBREAK]} anywhere else
ends the macro and causes 1-2-3 to display an error message.

Examples

In macro \A below, 1-2-3 repeats subroutine ENTRY up to ten times, to let you enter
names in a roster. If you press ENTER at the (GETLABEL} command instead of typing
a name, the [FORBREAK} command terminates the for-next loop and 1-2-3 continues
immediately with the instructions following the {FOR} command.

\A {BLANK ROSTER}
{GOTO}ROSTER~
{FOR COUNTER,1,10,1, ENTRY}

ENTRY {GETLABEL “Enter name: 7, @ CELLPOINTER(“address”)}
{IF @ CELLPOINTER(“contents”)=""}{FORBREAK}
{DOWN]}

The following excerpt from a macro uses {FORBREAK] to end a for-next loop if the
cell named TOTAL contains ERR. If TOTAL contains a value greater than 500, 1-2-3
performs the (RETURN} command and begins the next repetition of the loop (see the
{RETURN} command later in this chapter). If TOTAL contains anything else, 1-2-3
continues running the subroutine.

{IF @ISERR(TOTAL)}{FORBREAK}
{IF TOTAL>5001{RETURN}

{FORM}

{FORM input-location,[call—tuble],[include-list],[exclude—list]} suspends a macro
temporarily so you can enter and edit data in the unprotected cells in input-location.

Arguments

input-location is a range of any size that contains at least one unprotected cell. This is
the range where you enter data. input-location cannot include hidden columns.

call-table is an optional two-column range. Each cell in the first column contains one
or more macro names of keyboard keys (see page 109). Each adjacent cell in the
second column contains a set of macro instructions that 1-2-3 performs when you
press the key(s) listed in the first column.

include-list is an optional range that lists allowable keystrokes. You can specify any
character key and any key name. Each cell in the range can contain one or more of
the character keys and key names listed on page 109.

128 @Functions and Macros Guide

exclude-list is an optional range that lists unacceptable keystrokes. Each cell in the
range can contain one or more keystrokes. 1-2-3 beeps when you press an excluded
key. If you specify an include-list, do not specify an exclude-list, and vice-versa. 1-2-3
uses only one list argument. If you specify both an include-list and an exclude-list,
1-2-3 uses the include-list.

You can use any of the optional arguments without using the ones that precede
it by inserting an extra argument separator as a placeholder. For example, to
use a call-table and an exclude-list without an include-list, use the syntax

{FORM input-location,call-table, exclude-list} (two argument separators between
call-table and exclude-list).

There should be no punctuation between the names of the keyboard keys in call-table,
include-list, and exclude-list. Also, the table and lists are case-sensitive: for example,

if the include-list contains an uppercase B, but not a lowercase b, 1-2-3 allows you to
enter only uppercase B’s during the {FORM} command and ignores lowercase b’s.

To use {FORM} from a macro library, input-location must be a worksheet range.
You can specify a call-table, include-list, and exclude-list from a macro library or the
worksheet.

Uses
Use {FORM} to fill data entry forms.

Notes

{FORM} is similar to /Range Input, but the three optional arguments (call-table,
include-list, and exclude-list) give you more control over user entries than /Range
Input allows.

When 1-2-3 performs a {FORM} command, it moves the cell pointer to the first
unprotected cell in input-location, suspends the macro, and waits for you to press a
key. What happens next depends on whether {FORM} uses optional arguments.

If {FORM} uses What 1-2-3 does
No optional arguments 1-2-3 processes keystrokes exactly as it does during /Range
Input.

To cancel the {FORM} command in READY mode, you press
ENTER or ESC. 1-2-3 continues the macro at the instruction
following the {FORM} command, and leaves the cell pointer
where it was when you pressed ENTER or ESC.

If you use an include-list, you must specify ~ (tilde) and {ESC} in
the list or you cannot use ENTER or ESC to end the {FORM}
command.

(continued)

Macro Command Descriptions 129

If {FORM} uses What 1-2-3 does

Optional arguments 1-2-3 proceeds as follows:

If you press a key and the {FORM} command includes a
call-table argument, 1-2-3 checks the first column of the
call-table. If the keystroke is listed, 1-2-3 performs the
instructions in the second column as a subroutine, and then
returns to the {FORM} command and waits for you to press
another key. If you specified {ESC} or ~ (tilde) in a call-table
subroutine, 1-2-3 suspends the {FORM} command and allows
you to select 1-2-3 keys and menus (see “Suspending a
{FORM} Command” below).

If a keystroke is not listed in call-table, and the {FORM}
command includes an include-list, 1-2-3 checks the include-list.
If the keystroke is in the include-list, 1-2-3 performs the
keystroke; otherwise, 1-2-3 ignores the keystroke and beeps.

If a keystroke is not listed in call-table, and the {FORM}
command includes an exclude-list, 1-2-3 checks the
exclude-list. If the keystroke is in the exclude-list, 1-2-3 ignores
the keystroke and beeps; otherwise, 1-2-3 performs the
keystroke.

You can nest forms (place one form within another form) by making a call to
{FORM]}. 1-2-3 Release 2.3 lets you nest up to eight forms.

Suspending a {FORM} Command

Including {ESC} or ~ (tilde) in a call-table subroutine lets you move the cell pointer
out of input-range’s unprotected area and use all 1-2-3 keys and menus for the rest
of the call-table subroutine. When the call-table subroutine ends, 1-2-3 moves the cell
pointer to wherever it was when the call-table subroutine started (unless the cell
pointer is within input range’s unprotected area when the subroutine ends, in which
case 1-2-3 leaves the cell pointer where it is) and reinstates use of 1-2-3 keys as
defined by the {FORM} command.

To end a macro from within a call-table subroutine, use {RESTART} or {QUIT} in

the subroutine. (See the example below.) To end a {FORM} command from within
a call-table subroutine and continue the macro, use {(FORMBREAK] to leave the
{FORM} command and continue the macro at the instruction immediately following
the {FORM} command. See {FORMBREAK} on page 132.

Examples

The {FORM) command in the following example uses a call-table and an exclude-list.
This {FORM} command processes inventory orders in a database using the entry
form shown in the following illustration.

130 @Functions and Macros Guide

E10: U 0.19 READY

A B C D F G :
1
2 INVENTORY ORDER FORM :
3
4 Enter order information below. 7
5 Press CINS] to transfer order to database.
8 Press CEND] to stop entering orders. — Entry form (range ENTRYFORM)
g DATE ITEM ITEM # QTY UNIT PRICE
10

=y
pry

10°f 01-apr91 Pen 122 2000 0.19}——1

Input area (unprotected range INPUT_AREA)

The {FORM} command, its call-table, and its exclude-list are shown in the following
illustration. The extra argument separator in the {FORM} command (between
SIGKEYS and BADKEYS) indicates the absence of an include-list.

R
<
)
u
g

= . K L M
{FORM ENTRYFORM,SIGKEYS, ,BADKEYS} {FORM} command macro \A
23 BADKEYS {WINDOW}{QUERY} Exclude-list (range BADKEYS)

25 SIGKEYS (INS} (APPENDBELOW , INPUT, INPUT, .
2 ey SN (SCR. PR, TIT_AREAY RN -N‘w:]-_ Call-table (range SIGKEYS)

28 CONFIRM {GETLABEL “Stop entering orders? (y/n)",CHOICE}
FORMBREAK}

FEES N

g {IF SUPPER(CHOICE)="Y"}(|
31

32 CHOICE y

33

34

35

36

{FORM ENTRYFORM,SIGKEYS,, BADKEYS} stops the macro temporarily so you
can enter an order in the entry form. The call-table, SIGKEYS (J25..K26), includes
two key names: {INS} and {END}.

If you press INS during the {FORM} command, 1-2-3 appends the data in
INPUT_AREA to the order database (ORDER_DB), erases INPUT AREA, and
returns to the {FORM} command. See {APPENDBELOW]) on page 113.

If you press END during the {FORM} command, 1-2-3 branches to subroutine
CONFIRM, which uses a {GETLABEL} command to confirm that you want to stop
entering orders. If you enter y at the {GETLABEL} prompt, the {FORMBREAK]}
ends the {FORM} command. If you type any other letter, 1-2-3 returns to the
{FORM} command.

The exclude-list, BADKEYS (J23), contains two key names: {WINDOW} and
{QUERY}. If you press either of these keys during the {FORM} command, 1-2-3
ignores the keystroke.

Macro Command Descriptions 131

{FORMBREAK}

{FORMBREAK]} ends a {FORM} command canceling the current form.

Uses

Use {FORMBREAK]} to leave the current form. You can also use {FORMBREAK]}
to end a nested {FORM} command and have 1-2-3 return you to the previous form.
1-2-3 continues at the command following the {FORM} command.

Use {FORMBREAK]} only within a {FORM} command.

Notes

Use {FORMBREAK]} only within a call-table subroutine or a subroutine to which you
transfer control from a call-table subroutine with {BRANCH} or {DISPATCH]}. If you
use {FORMBREAK]} without first using a {FORM} command, 1-2-3 ends the macro
and displays an error.

Example

The following macro lets you enter an invoice number, the date, and a company
name in an INVOICE form. Pressing + (plus) moves you to the ITEM form where
you can enter one or more items for the current invoice.

INVOICE form

| B c

; mw Ice Cream Store
3 | Invoice :
4 | Number Date Company
6

7

8

L [TEMform

10 T thomm INvoRcE, ML eALLY

12 INV_CALL + CFORM ITEM,IT CALLY o
{INS} {APPENDBELOW ORDERS,INVOICE}BLANK INVOICE}

19 {BLANK

18 m‘__xm‘mf tmm €, ITE0
20 {FORMBREAC

{FORM INVOICE,INV_CALL} stops the macro temporarily so you can enter data
in the INVOICE entry form. Pressing + (plus) runs the nested ITEM form.

132 @Functions and Macros Guide

ITEM has a call table named IT_CALL (A15..C16), which includes the keys named
DEL and INS. If you press DEL while entering items for the current invoice, a
{FORMBREAK] returns you to the INVOICE form. If you press INSs, the macro adds
the items to the database and uses (FORMBREAK} to return you to the INVOICE
form. You can then press INS to insert the invoice and display a blank form or you
can press + (plus) to add another item to the form.

{FRAMEOFF} and {FRAMEON}

{FRAMEOFF} suppresses display of the worksheet frame (column letters and row
numbers). The frame is suppressed until 1-2-3 performs a {FRAMEON} command
or the macro ends. {FRAMEON] redisplays the worksheet frame hidden by a
{FRAMEOFF} command. {FRAMEOFF} and {FRAMEON]} are identical to
{BORDERSOFF} and {BORDERSON]}.

The following illustration shows a screen without the worksheet frame.

Mo . e READY

Uses

Use {FRAMEOFF} and {FRAMEON} when column letters and row numbers might
distract users.

Notes

If a (WINDOWSOFF} command was performed earlier in the macro, precede
{FRAMEOFF} or {FRAMEON} with a {WINDOWSON} command. The effects of
{FRAMEOFF} or {FRAMEON} will not be visible until you issue a command that
redraws the screen (for example, {D} or ~).

Macro Command Descriptions 133

Examples

The following excerpt from a macro turns off the worksheet frame during a {FORM}
command and then redisplays the frame.

{FRAMEOFF}
{FORM ORDERFORM}
{FRAMEON}

{GET}

{GET location} suspends a macro until you press a key, and then records the keystroke
in location.

Argument

location is the address or name of a cell or range, or a formula that returns the address
of a cell or range. If you specify a range, 1-2-3 records the keystroke in the first cell in
the range.

Uses
Use {GET} to perform conditional processing based on the key that you press.

Notes

When 1-2-3 performs a {GET} command, it pauses until you press any key except
CTRL-BREAK. Pressing CTRL-BREAK ends the macro. {GET} stores the character or key
name as a label in location and continues to run the macro starting in the cell below
the {GET} command. There is no time limit on a {GET} command; the macro waits
indefinitely for a keystroke.

{GET} differs from {LOOK}. {GET} removes a key from the buffer while {LOOK}
copies a keystroke from the buffer.

When you press ESC, {GET} records {ESC} and when you press DEL, {GET} records
{DEL}. For all other keys, {GET) records the full key name (for example,
{BACKSPACE} or {RIGHT} instead of {BS} or {R}).

Example

Macro \A prompts you to choose Daily or Monthly (by typing D or M). Tt then stores
the keystroke in the cell named CHOICE. If the keystroke in CHOICE is D, 1-2-3
branches to DAY:; if it is M, 1-2-3 branches to MONTH. If the keystroke is anything
else, 1-2-3 beeps and starts the macro again.

134 @Functions and Macros Guide

\A {GOTOJEXPENSES~
Choose D(aily) or M(onthly)
{GET CHOICE}
{ESC}
{IF @UPPER(CHOICE)="D"}{BRANCH DAY}
{IF @UPPER(CHOICE)="M"}{BRANCH MONTH}
{BEEPHBRANCH \ A}

{GETLABEL}

{GETLABEL prompt,location} prompts you to type information, suspends the macro
while you type a response, and stores the response as a label in location.

Arguments

prompt is text (up to 72 characters can be displayed), the address or name of a cell
that contains the prompt, or a text formula that results in the prompt.

location is the address or name of a cell or a range, or a formula that returns the
address or name of a cell or a range. If you specify a range, 1-2-3 stores the user’s
response in the first cell of the range.

Notes

When 1-2-3 performs a {GETLABEL} command, it displays prompt in the control
panel and pauses for you to enter a response (up to 80 characters). When you press
ENTER, 1-2-3 stores the entry as a label in location and continues the macro. If you
press ENTER without typing anything, 1-2-3 enters a left-aligned label prefix in
location, creating a label without any text.

If prompt is a cell address or name, {GETLABEL} displays the cell contents as the
prompt if the cell contains a label. If the cell contains a text formula, (GETLABEL)}
displays the result of the formula as the prompt. If the cell contains a value or is
blank, {GETLABEL)} returns an error.

The (GETLABEL} prompt and your response appear in the control panel even after
a {PANELOFF} command.

Examples

The following {GETLABEL} command prompts you to type a product name, and
then stores the name in a cell named PRODUCT:

{GETLABEL “Type a product name and press Enter: ”,PRODUCT}

In the following {GETLABEL} command, the macro gets the prompt from
CITY_PROMPT, and then enters your response as a label in cell CITY:

{GETLABEL CITY_PROMPT,CITY}

Macro Command Descriptions 135

In the following {GETLABEL} command, the macro gets the prompt from
PHONE_PROMPT, and then enters your response in the current cell:

{GETLABEL PHONE_PROMPT,@CELLPOINTER(“address”)}

(GETNUMBER}

{GETNUMBER prompt,location} prompts you to type a number, suspends the macro
while you respond, and stores the response in location.

Arguments

prompt is any text (up to 72 characters can be displayed), or the address or name of
a cell that contains the prompt, or a text formula that results in the prompt.

location can be the address or name of a cell or a range, or a formula that returns the
address or name of a cell or a range. If you specify a range, 1-2-3 stores the user’s
response in the first cell of the range.

Notes
When 1-2-3 performs a {GETNUMBER} command, it displays prompt in the control

line and pauses for you to enter a value (up to 80 characters for a formula). When
you press ENTER, 1-2-3 stores the entry as a value in location and continues the macro.

If you enter a label, text formula, or the address or name of a cell that contains a label
or text formula, 1-2-3 enters ERR in location. 1-2-3 also enters ERR if you press ENTER
without typing anything.

Examples

The following {GETNUMBER} command prompts for your age, and then enters the
response in the current cell.

{GETNUMBER “Enter your age: ”,@CELLPOINTER(“address”)}

The following macro stores your response to the prompt in cell NEWSALES, and
then checks the contents of NEWSALES. If NEWSALES contains ERR (you entered a
non-numeric response), the macro branches to RETRY, which contains instructions to
beep and start the macro again. If NEWSALES contains a number, the macro adds
the number to the current value in YTD SALES and stores the result in YTD_SALES.

\S {GETNUMBER “Enter month’s sales: ”,NEWSALES}
{IF @ SERR(NEWSALES)}{BRANCH RETRY}
{LET YTD_SALES,YTD_SALES+NEWSALES}

RETRY {BEEP}{BRANCH \S}

136 @Functions and Macros Guide

{GETPOS}

{GETPOS location) retrieves the character offset position of the byte pointer (the
pointer that moves character by character through an open text file) and enters the
number of characters between the beginning of the file and the byte pointer in
location.

Arguments

location is the address or name of a cell or a range, or a formula that returns the
address or name of a cell or a range. If you specify a range, 1-2-3 enters the number
in the first cell in the range.

Uses

Use {GETPOS} to track how much data has been read from a text file. For example,
if you want to read the first 100 bytes from a text file when you are not sure how
many bytes at a time will be read, use {GETPOS} in the loop that reads and processes
the bytes. When location contains a number greater than 100, branch out of the loop.

Notes
You must use {OPEN} before you can use {GETPOS}.

After 1-2-3 stores the character offset position in location, the macro continues in
the cell below the {GETPOS} command. If no text file is open, 1-2-3 ignores a
{GETPOS} command and continues to the next macro instruction in the same cell.

The byte pointer indicates the next byte in the text file to read or write. The first
character position in a text file is 0, not 1, so if the byte pointer is on the first byte
in the file, {GETPOS} enters 0 in location. If the byte pointer is on the tenth byte,
{GETPOS} enters 9; and so on.

Example

The following line from a macro records the current position of the byte pointer in
cell POINTER. If the {GETPOS} command succeeds, the macro continues in the next
cell. If a text file is not open, the macro branches to FAIL, which contains further
instructions.

{GETPOS POINTERHBRANCH FAIL}
{IF POINTER<MAXBYTES}{BRANCH READLOOP}
{QUIT}

Macro Command Descriptions 137

{GOTO}

{GOTO} is equivalent to pressing F5(GOTO). For more information about 1-2-3
function keys, see the Quick Reference.

Notes
Use ~ (tilde) after a {GOTO} command (for example, {GOTO}C1~).

{GRAPH}

{GRAPH] is equivalent to pressing F10 (GRAPH). For more information about 1-2-3
function keys, see the Quick Reference.

Notes

If no current graph is defined when you use {GRAPH}, 1-2-3 beeps and displays a
blank screen. To return control to the macro, press any key.

{GRAPHOFF} and {GRAPHON}

{GRAPHON [named-graph),[nodisplayl} displays a graph using the current settings,
or makes named-graph the current graph and optionally displays it. {GRAPHON}
displays the graph while the macro continues to run. This differs from {GRAPH},
which displays the graph while the macro pauses.

{GRAPHOFF} removes a graph displayed by a {GRAPHON} command and
redisplays the worksheet.

Arguments

named-graph is an optional label that matches an available named graph. If
named-graph is not a graph name, the macro terminates with an error.

nodisplay is the optional label you specify if you want to use the named-graph
settings, but you do not want to display the graph.

Uses

Use {GRAPHON] with no arguments to display a full-screen view of the current
graph while the macro continues to run. The graph remains displayed until

1-2-3 encounters a {GRAPHOFF} command, another {GRAPHON] command, an
{INDICATE} or {?} command, a command that displays a prompt or menu in the
control panel {(GETLABEL}, (GETNUMBER}, {MENUCALLY, {MENUBRANCH]},
/XL, /XM, or /XN), or the end of the macro.

138 @Functions and Macros Guide

Use {GRAPHON named-graph)} to make the named-graph settings the current graph
settings and display a full-screen view of named-graph while the macro continues

to run. When 1-2-3 reaches a {GRAPHOFF} command, another {GRAPHON]}
command, an {INDICATE} or {?} command, a command that displays a prompt or
menu in the control panel, or the end of the macro, it removes named-graph from the
screen.

Use {GRAPHON named-graph,nodisplay} to make the named-graph settings the current
graph settings without displaying the graph.

Notes

named-graph refers to a name assigned to graph settings with / Graph Name Create,
not the name of the .PIC file that contains the graph.

Current settings are the settings 1-2-3 uses the next time it draws a graph from this
worksheet. If you use the nodisplay argument, named-graph becomes the current
group of graph settings, but 1-2-3 does not display the graph.

If no current graph is defined, (GRAPHON]} beeps and then returns control to the
macro; you do not need to press a key.

Example

This macro displays three named graphs (LINE, BAR, and PIE) at two-second
intervals.

{GRAPHON LINE}

{WAIT @NOW+@TIME(0,0,5)}
{GRAPHON BAR}

{(WAIT @NOW+@TIME(0,0,5)}
{GRAPHON PIE}

{WAIT @NOW+@TIME(0,0,5)}
{GRAPHOFF}

{HELP}

{HELP} is equivalent to pressing F1 (HELP). For more information about 1-2-3 function
keys, see the Quick Reference.

Notes

The macro pauses while you work in Help. When you leave Help, 1-2-3 performs the
next command in the macro.

{HOME}

{HOME} is equivalent to pressing HOME.

Macro Command Descriptions 139

{IF}

{IF condition} evaluates condition to determine if it is true or false. If condition is true,
the macro continues with the next instruction in the same cell as the {IF} command.
If condition is false, the macro continues with the first instruction in the cell below the
{IF} command.

Arguments

condition is a logical expression or the address or name of a cell that contains a logical
expression. (A logical expression uses one of the logical operators = <> < > <= >=
#AND# #NOT# or #OR#.) You can use any formula, number, text, cell address, or
cell name in the logical expression as condition.

Uses

The {IF} command can implement if-then-else processes like those in programming
languages. The instructions that follow the {IF} command in the same cell are the
then clause. The instructions in the cell below the {IF} command are the else clause.
Include a {BRANCH]} or {RETURN} command in the then clause to prevent 1-2-3
from executing the else clause after the then clause.

Notes

When 1-2-3 performs an {IF} command, it evaluates condition first. If condition results
in any value except 0 (zero), 1-2-3 evaluates it as true, and the macro continues in the
same cell, with the instruction immediately following the {IF} command.

If condition results in 0 (zero), 1-2-3 evaluates it as false, and the macro continues in
the cell below the {IF} command. The values that 1-2-3 interprets as zero are 0, a false
logical expression, a blank cell, text, ERR, and NA.

If condition is true, 1-2-3 performs both the instruction in the same cell as the {IF}
command and the instruction in the cell below the {IF} command. If you do not want
1-2-3 to perform both instructions, use {QUIT}, {BRANCH], or another {IF} following
the {IF} command.

Examples

In the following macro, if the entry in the cell named DATE is a value from 21002
through 31959 (the date numbers for 1 July 1957 through 1 July 1987), the macro
copies the contents of DATE to the current cell and returns to the calling macro.
Otherwise, the macro continues to the {BRANCH} command in the cell below.

{IF DATE>21002}{IF DATE<31959}/ cDATE~~{QUIT}
{BRANCH INVALID_DATE}

In the following macro, if the entry in the cell named SALARY is greater than $70,000,
the macro performs subroutine HIBRACKET. If SALARY is less than or equal to
$70,000, the macro performs subroutine LOWBRACKET.

140 @Functions and Macros Guide

{IF SALARY>70000,{BRANCH HIBRACKET}
{BRANCH LOWBRACKET}

In the following macro, if the cell named TESTVAL contains a true logical expression
or any other entry that does not result in zero, the macro completes subroutine
{RTN1}, then branches to NEXTRTN. Otherwise, the macro performs subroutine
{RTN2}.

{IF TESTVAL=1{RTN1}{BRANCH NEXTRTN]}
{RTN2}

{INDICATE}

{INDICATE I[string]} replaces READY (or another mode indicator) with string as the
mode indicator. The mode indicator continues to display string until 1-2-3 reaches
another {INDICATE} command or until you retrieve another file, select /Worksheet
Erase Yes, or leave 1-2-3. {INDICATE} with no argument restores the mode indicator
that reflects the current mode (READY or WAIT, for example).

Arguments

string is any text that fits in the first line of the control panel, the address or name
of a cell that contains the text, or a text formula. Using an empty string as string
({INDICATE “”'}) removes the mode indicator from the control panel.

Notes

Enclose string in quotation marks so it is not confused with a range name.

In FILES and NAMES modes, string may hide the mouse and drive icons.

Examples

The following command displays Database Maintenance Macro in the indicator
in the control panel. The indicator expands to fit the text.

{INDICATE “Database Maintenance Macro”}

The following command displays 1 in the mode indicator in the control panel.
The mode indicator shrinks to fit the text.

{INDICATE “1”}

The following command displays the contents of the cell named MSG in the mode
indicator in the control panel.

{INDICATE MSG}

The following command restores the current 1-2-3 mode to the mode indicator in
the control panel.

{INDICATE}

Macro Command Descriptions 141

The following command lets you move to a cell and then displays the address of
that cell. {GET} stores your next keystroke, and the last {INDICATE} command
restores the current mode to the mode indicator in the control panel.

{INDICATE “Move the cell pointer to a cell and press ENTER"}
{7}

{INDICATE “You moved to cell “&@CELLPOINTER(“address”)}
{GET KEY}

{INDICATE}

{INSERT} and {INS}

{INSERT} and {INS} are equivalent to pressing INS.

(LEFT} and {L}

{LEFT [number]} and {L [number]} are equivalent to pressing <.

Argument

number is an optional argument that tells 1-2-3 how many times to press ¢—. number
is a value, the address or name of a cell that contains a value, or a formula that
returns a value. {LEFT} without an argument is equivalent to {LEFT 1}.

(LET}

{LET location,entry} enters a number or label in location.

Arguments

location is the address or name of a cell or a range, or a formula that returns the
address or name of a cell or range. If you specify a range, 1-2-3 enters entry in the
first cell of the range.

entry can be a number, text, a formula, or the address or name of a cell that contains
a number, a label, or a formula.

Uses

Use {LET} with {IF} to vary cell contents depending on a condition or to change
entries in a database when you know the actual cell address of the entries you want
to change.

142 @Functions and Macros Guide

Notes

If you use a formula for entry, 1-2-3 evaluates the formula and enters the result in
location. {LET} does not enter formulas.

{LET} does not cause 1-2-3 to automatically recalculate the worksheet. Use a ~ (tilde)
or {CALC} after {LET} to recalculate.

{LET QTR_2,1.5*QTR_1}~

Examples

In the following macro, the {LET} command enters the result of 1.5 times the value in
QTR_1 in the cell named QTR_2 if QTR _1 is a defined range name. If QTR_1is nota
range name, the {LET} command enters 1.5*QTR_1 as a label in cell QTR 2.

{LET QTR_2,1.5*QTR 1}~
The following macro enters 1.5*QTR_1 as a label in the cell named QTR 2.
{LET QTR_2,“1.5*QTR_1"}~

The following macro enters the result of the text formula +“Ms. ”&FULLNAME in
the cell named CUSTOMER.

{LET CUSTOMER,+“Ms. “&FULLNAME}~

{LOOK]}

{LOOK location} checks the typeahead buffer for keystrokes and then records the
first keystroke it contains (if any) as a label in location.

Argument

location is the address or name of a cell or range, or a formula that returns the address
or name of a cell or range. If you specify a range, 1-2-3 records the keystroke in the
first cell in the range.

Uses

Use {LOOK] to stop a long macro, break out of an infinite loop, or tell a macro to
branch elsewhere. The macro keeps running unless the {LOOK} command records a
character that tells the macro to do something else.

Notes

The typeahead buffer is a region in memory where 1-2-3 stores keystrokes you type
during noninteractive parts of a macro. It contains all the keystrokes typed since the
last interactive command or since the macro began. If the buffer is empty when 1-2-3
performs a {LOOK} command, it enters a left-aligned label-prefix character in
location, creating an empty string.

Macro Command Descriptions 143

{LOOK] differs from {GET}. {LOOK]} copies a keystroke from the buffer while {GET}
removes a keystroke from the buffer. If your macro is waiting for a specific character,
use {BLANK] before each {LOOK} command to erase the previous keystroke.

When you press ESC, {LOOK} records {ESC} and when you press DEL, {LOOK}
records {DEL}. For all other keys, {LOOK]} records the full key name (for example,
{BACKSPACE} or {RIGHT} instead of {BS} or {R}.

Example

The following excerpt from a macro requires you to perform specific tasks. The
macro begins by erasing the contents of the cell named KEYCELL. Later, the macro
sounds two tones and checks whether you typed a character. If the typeahead buffer
is empty, the macro loops back to the beginning of TASK. If the typeahead buffer
contains a character, the macro branches to the subroutine named NEWTASK.

TASK {BLANK KEYCELL}
{BEEP 4}{BEEP 2}
{LOOK KEYCELL}

{IF KEYCELL=""H{BRANCH TASK}
{BRANCH NEWTASK}

{MENU}

{MENU} is equivalent to pressing / (slash) or < (less-than symbol), or moving the
mouse pointer to the control panel.

Notes
Use : (colon) instead of {MENUJ} to activate the Wysiwyg menu.

{MENUBRANCH} and {MENUCALL}

{MENUBRANCH Iocation} displays in the control panel the macro menu that starts
in the first cell of location. 1-2-3 waits for you to select an item from the menu and
then branches to the macro instructions associated with that item. {MENUBRANCH]
does not return to the calling macro when 1-2-3 completes the menu’s macro
instructions. (See (BRANCH]} on page 117.)

{MENUCALL location} displays in the control panel the macro menu in location. 1-2-3
waits until you select an item from the menu and then calls the subroutine associated
with that menu item. (See {subroutine} on page 158.) {MENUCALL) returns to the
calling macro when 1-2-3 completes the macro menu instructions.

The following illustrations show a macro menu in a range and the activated macro
menu.

144 @Functions and Macros Guide

A13: [w12] '\ READY
: : B C D E F :
\M {GOTOMMSG_CELL"Select a file from the menu...~ o~ Menu macro (\M
{MENUBRANCH FILE_CHOICE} ; (W
§ FILE_CHOICE PERS. ml CASH, rﬂ INVEN.WK1 RECVS.WK1 i PAYS.WK1 ;
Personnel Cashflow Inventory Accts Recei ol«:ctq Payub es
/rPERS™ /frCASH™ /frINVEN® /frRECVS™ Macro menu
Al: [W12] 'Select a file from the merw.. MENU
PERS.WK1 ~CASH.WKT INVEN.W1 RECVS.WK1 PAYS.WK1 Menu items

m L

e B c]
Select a file from the menu...

ounswN
24P va

Menu item description

Arguments

location is the address or name of a cell, or a formula that returns the address or name
of a cell. location must be the first cell of a row that contains the macro menu items
(branch or subroutine names).

Notes

Macro menus you create with {(MENUBRANCH} and {MENUCALL} work the same
way as 1-2-3 menus.

A macro menu appears in the control panel even after a {PANELOFF} command.

Pressing ESC when a macro menu appears in the control panel cancels the
{MENUBRANCH]} or {MENUCALL} command and returns control to the location
from which the (MENUBRANCH]} or {MENUCALL} command was issued. The
macro continues at the next instruction following the {MENUBRANCH] or
{MENUCALL} command.

For more information about creating a macro menu, you can use the \C macro in
the sample macro worksheet, SAMPMACS.WK1 (see page 172).

Examples

The following macro uses (MENUBRANCH] to display the macro menu that starts
in the cell named REPORTMENU. When you select one of the items in the report
menu, 1-2-3 branches to the macro instructions associated with that item. 1-2-3
performs the {BEEP} command only if you press ESC instead of selecting a menu
item.

Macro Command Descriptions 145

{MENUBRANCH REPORTMENU}
{BEEP}

The following macro uses {(MENUCALLY} to display the macro menu that starts
in the cell named REPORTMENU. When you select one of the items from the
report menu, 1-2-3 calls the set of macro instructions associated with that item as
a subroutine. When it completes those instructions, 1-2-3 executes the macro
command immediately after the (MENUCALL} (saves the revised file), and then
the macro ends. If you press ESC instead of selecting a menu item, 1-2-3 saves the
file and the macro ends.

{MENUCALL REPORTMENU}
/fs~r
{QUIT}

Creating a Macro Menu
1. Decide on a worksheet location for the macro menu.

2. Enter up to eight menu items in consecutive cells in the same row, beginning at
location. Leave the cell to the right of the final item blank.

Follow these guidelines when entering menu items:

e Menu items can be labels or text formulas. If you enter a formula,
1-2-3 displays the result as the menu item.

e Each menu item should start with a different character so you can select an
item by typing the first character. If two or more menu items have the same
first character, 1-2-3 selects the first item (reading from left to right) when you
press that character. However, you can select a menu item that has a
non-unique first letter by highlighting it and pressing ENTER.

e Try to make each menu item a single word. If you use multiple-word items,
connect the words with a - (hyphen), for example, First-Quarter. Otherwise, a
user might think the words are separate menu items.

e The combined menu items and delimiting spaces are restricted to the screen
width. If they exceed the screen width, 1-2-3 displays an error.

e The column to the right of the last menu item must be blank. A blank cell
tells 1-2-3 there are no more items.

3. Enter the command description for each menu item in the cell directly below the
menu item. Command descriptions can be labels or text formulas.

4. Enter the macro instructions for 1-2-3 to branch to (MENUBRANCH}) or call
as subroutines (MENUCALLY}) immediately below the command descriptions
(that is, the second row below location).

146 @Functions and Macros Guide

5. Use /Range Name Create to assign a range name to the first menu item in your
macro menu. For example, if cell B5 is your first menu item, you might name it
File_choice. Using /Range Name Create allows your macro to run in the event
that you add or delete rows or columns.

{NAME}

{NAME [number]} is equivalent to pressing F3 (NAME). For more information about
1-2-3 function keys, see the Quick Reference.

Argument

number is an optional argument that tells 1-2-3 how many times to press F3 (NAME).
number is a value, the address or name of a cell that contains a value, or a formula
that returns a value. {NAME]} without an argument is equivalent to {NAME 1}.

{ONERROR}

{ONERROR branch-location,[message-location]} transfers a macro to branch-location if
certain 1-2-3 errors occur while a macro is running. If you use the optional argument,
{ONERROR} records the error message in message-location.

Arguments

branch-location is the address or name of a cell or range, or a formula that returns the
address or name of a cell or range. branch-location contains the macro instructions
to which 1-2-3 branches after an error occurs. If you specify a range, 1-2-3 branches
to the first cell in the range.

message-location is the address or name of a cell or range, or a formula that returns
the address or name of a cell or range where 1-2-3 is to store the error message.
If you specify a range, 1-2-3 uses the first cell in the range.

Uses

Use {ONERROR} before any point at which there is a possibility of a fatal error. To
continue finding errors, include another {ONERROR} command in the instructions at
branch-location.

Notes

{ONERROR} traps only fatal errors (errors that return 1-2-3 to READY mode), such
as the error “Disk drive not ready” during a /File Save). {ONERROR} does not trap
macro syntax errors (typographical errors in macro instructions that prevent 1-2-3
from interpreting the instructions). When 1-2-3 encounters a syntax error, it displays
a macro error message and ends the macro.

Macro Command Descriptions 147

An {ONERROR} command remains in effect until an error occurs (an {ONERROR}
command can handle only one error), until 1-2-3 performs another {ONERROR}
command, or until the macro ends. You can use looping to reset {ONERROR}.

If an error occurs while a macro is running, 1-2-3 normally displays an error message
and ends the macro. If an {ONERROR} command is in effect when the error occurs,
however, 1-2-3 branches to branch-location for further macro instructions instead of
ending the macro. If you include the optional message-location argument, 1-2-3
records the error message in message-location.

{ONERROR] clears the subroutine stack: if the error occurs in a subroutine, 1-2-3
does not return to the macro that called the subroutine after completing the
instructions at branch-location unless the instructions at branch-location specifically
branch back to the calling macro.

Pressing CTRL-BREAK causes a 1-2-3 error. {ONERROR} will trap CTRL-BREAK unless
a {BREAKOFF} command earlier in the macro disabled CTRL-BREAK.

If an error occurs, {ONERROR} does not prevent 1-2-3 from automatically issuing a
{BORDERSOFF}, {FRAMEOFF}, {PANELOFF}, or (WINDOWSOFF} command.

Example
The following excerpt from a macro branches to a subroutine named CHANGEDIR if
a file retrieve operation fails, and stores the error message in a cell named FILE_ERR.

{ONERROR CHANGEDIR FILE_ERR}

{OPEN}

{OPEN file-name,access-type} makes a text file available for reading, writing, or both,
depending on access-type. An open text file does not appear on the screen. It is open
only in the sense that 1-2-3 can use it.

Arguments

file-name is the full name of a text file, including the extension (for example,
JOBMEMO.PRN), or the address or name of a cell that contains a text file name.
If the text file is not in the working directory, specify the path as part of file-name
and enclose the argument in double quotation marks (for example,
“C:\PERSONAL\JOBMEMO.PRN").

access-type is one of the four characters r, w, m, or a, or the address or name of a cell
that contains one of those characters. If you are specifying a character for access-type,
enclose the character in quotation marks so it is not confused with a range name. The
character specifies the type of access you have to the file once it is open.

148 @Functions and Macros Guide

Character Access type Task

r read Opens an existing file with the byte pointer at the beginning.
Access to the file is read-only: you can use {READ} and
{READLN]}, but not {WRITE} or {WRITELN}.

w write Opens a new file with read and write access: you can use
{READ}, {READLN}, {WRITE}, and {WRITELN}.
CAUTION Opening an existing file with write access

erases the file’s contents. Use modify or append to write to
an existing file.

m modify Opens an existing file with the byte pointer at the beginning.
You can use {READ}, {READLN}, {WRITE}, and
{WRITELN}.

a append Opens an existing file with the byte pointer at the end. You

can use {READ}, {READLN}, {WRITE}, and {WRITELN].

Uses

Use {OPEN} before you use any of the other file manipulation macro commands:
{CLOSEJ, {FILESIZE}, {GETPOS}, {READ}, {READLN}, {SETPOS}, {WRITE}, and
{WRITELN}.

Use {OPEN} with write access to create a new text file.

Notes
A text file (sometimes called a print file or an ASCII file) is a file stored on disk.

Only one text file can be open at one time, so using an {OPEN} command when a
text file is already open closes the open text file before it opens the specified text file.
You do not need a {CLOSE} command between {OPEN} commands.

If {OPEN} succeeds, the macro continues in the cell below the {OPEN} command.
If {OPEN} fails, the macro continues to the next macro instruction in the same cell
as the {OPEN} command.

Follow {OPEN} with an error handling routine to test that the file was opened
successfully.

Examples

The following macro opens a new text file named PASTDUE.PRN on drive C, enters
the contents of the cell named OVERDUE as the first line of the file, and closes the
file; then the macro ends. If the macro is unable to find PASTDUE.PRN on drive C,
the macro branches to CONTINUE for further instructions.

{OPEN “C:\PASTDUE.PRN”,“w”}{BRANCH CONTINUE}
{WRITELN OVERDUE}
{CLOSE}

Macro Command Descriptions 149

In the following macro, if the working directory contains a file named
ACCOUNTS.PRN, 1-2-3 opens the file with read access, enters the first line of the
file in the cell named NEW_BALANCE, closes the file, and ends the macro. If the
working directory does not contain a file named ACCOUNTS.PRN, the macro
branches to CONTINUE.

{OPEN ACCOUNTS.PRN,“r"}{BRANCH CONTINUE}
{READLN NEW_BALANCE}
{CLOSE}

{PANELOFF} and {PANELON}

{PANELOFF [clear]} freezes the status line and control panel until 1-2-3 encounters
a {PANELON} command or the macro ends.

{PANELON} unfreezes and displays the status line and control panel.

Argument
clear clears the control panel and status line before freezing them.

Notes

{PANELOFF} suppresses control-panel activity that results only from keystroke
instructions. Macro commands that cause changes in the control panel -
{MENUBRANCH}, {MENUCALL)}, {GETLABEL}, (GETNUMBER}, {WAIT}, and
{INDICATE]} - override a {PANELOFF} condition. (/XL, /XM, and /XN also override
a {PANELOFF}.)

You can use {INDICATE} to display a mode indicator after a {PANELOFF} command.

Uses

Use {PANELOFF)} in interactive macros to freeze the status line and control panel
when activity in that area would confuse users.

You can also use {PANELOFF} to speed up a macro.

Example

The following macro freezes the status line and control panel so that you do not see
the series of prompts and menus that normally appear while 1-2-3 is performing
GOTO (F5) and /Range Erase. The macro then pauses for five seconds before
unfreezing the status line and control panel.

{PANELOFF}
{GOTO}DATA_RANGE~
/reDATA_RANGE~

{WAIT @NOW+@TIME(0,0,5)}
{PANELON}

150 @Functions and Macros Guide

{PGDN} and {PGUP}

{PGDN [numberl} and {PGUP [number]} are equivalent to pressing PG DN and PG UP.

Argument

number is an optional argument that tells 1-2-3 how many times to press PG DN or

PG UP. number is a value, the address or name of a cell that contains a value, or a
formula that returns a value. {PGUP} and {PGDN} without arguments are equivalent
to {PGUP 1} and {PGDN 1}.

{PUT}

{PUT location,column-offset ,row-offset entry} enters a number or a label in a cell within
location.

Arguments

location is the address or name of a range of any size, or a formula that returns the
address or name of a cell or range that contains a cell where you want to enter data.

column-offset and row-offset are numbers that identify the column and row position
of a cell within location. The offset number for the first column and row is 0, for the
second column and row is 1, for the third column and row is 2, and so on. (For
example, 2,4 specifies the third column and fifth row of location.)

entry is a number, text, a formula, or the address or name of a cell that contains
a number, label, or formula. If entry is a text formula that begins with double
quotation marks, precede it with a + (plus).

Uses

Use {PUT} to change entries in a database when you know the relative position in
the database, but not the specific cell address.

Notes

Using an offset number that specifies a column or row outside the specified range
(for example, using 4 for column-offset when location includes only three columns)
ends the macro with an error message.

Examples
The following examples refer to a range named COSTS (A1..D5) in the worksheet.
The command {PUT COSTS,3,2,45} places the number 45 in cell D3.

The command {PUT COSTS,2,0, MONTH} copies the contents of the cell named
MONTH to cell C1. If MONTH contains a formula, it copies the current value of
the formula to cell C1.

Macro Command Descriptions 151

The command {PUT COSTS,0,8,500} results in an error. Range COSTS has only five
rows, so a row-offset of 8 is invalid.

{QUERY}

{QUERY} is equivalent to pressing F7 (QUERY). For more information about 1-2-3
function keys, see the Quick Reference.

{QUIT}

{QUIT)} ends a macro immediately, returning control to the user. 1-2-3 never
performs instructions that follow a {QUIT} command.

Notes

When 1-2-3 performs a {QUIT} command, it stops executing the macro and returns
control of the 1-2-3 work session to the user. If {QUIT} is included in a subroutine,
the command ends the entire macro, not just the subroutine.

Examples

In the following macro, if the cell named YEAR contains the value 1990, the macro
ends; otherwise, 1-2-3 branches to NEW.

{IF YEAR=1990}{QUIT}
{BRANCH NEW}

In the following macro, if the value in the cell named YEAR is less than 1990, 1-2-3
branches to OLD; otherwise, the macro ends.

{IF YEAR<1990{BRANCH OLD}
{QUIT}

{READ)}

{READ byte-count location} copies the number of characters specified in byte-count
from an open text file to location.

Arguments

byte-count is a value, the address or name of a cell that contains a value, or a formula
that returns a value from 0 through 240.

location is the address or name of a cell or range, or a formula that returns the address
or name of a cell or range. If you specify a range, 1-2-3 enters the data in the first cell
of the range.

152 @Functions and Macros Guide

Notes

Before you use {READ}, use {OPEN} to specify the text file that you want to use.

If no text file is open, 1-2-3 ignores {READ} and the macro continues to the next
instruction in the same cell. If {READ} succeeds, the macro copies the data to location
and continues in the cell below the {READ} command.

After each {READ} command, the byte pointer advances by the number specified in
byte-count, so that a subsequent {READ} command begins reading at the next
character in the file.

{READ]} copies the carriage-return and line-feed characters at the end of text lines. If
you don’t want to copy the carriage-return and line-feed characters, use {READLN}.

To see the results of a {READ} command immediately, use a ~ (tilde) or a command
that redraws the screen (for example, {DOWN]}).

Example
The byte pointer is at the first character (offset 0) of the text:

Total Sales for the Year Ending 1988

The following {READ} command copies the word Total and the space that follows
it to the cell named CHARS. The byte pointer moves forward six characters, to the
beginning of the word Sales.

{READ 6,CHARS}

{READLN}

{READLN location} copies a line from an open text file and stores the characters in
location.

Argument
location is a single cell or a range. If you specify a range, 1-2-3 enters the data in the
first cell of the range.

Uses
Use {READLN} to copy a line of text that has an undetermined length.

Notes
Before you use {READLN}, use {OPEN} to specify the text file that you want to use.

{READLN} copies a line of characters starting at the position of the byte pointer and
ending before a carriage return. 1-2-3 moves the byte pointer to the character after

Macro Command Descriptions 153

the carriage return in the text file, so that a subsequent {READLN} command begins
there. 1-2-3 does not copy the carriage return (and line-feed characters) with the line
of text.

If no text file is open, 1-2-3 ignores {(READLN} and the macro continues with the next
instruction in the same cell as the {READLN} command. If {READLN} succeeds, the
macro copies the data to location and continues with the cell below the {READLN}
command.

Follow {READLN]} with an error handling routine to test that the line was read
successfully.

Example

The byte pointer is at the beginning of the line that contains the word January. Each
line ends with a carriage-return.

January
February

The first (READLN} command copies the word January to cell MONTH1. The next
{READLN} command copies the word February to cell MONTH2. Any subsequent
{READLN} commands store subsequent lines in the specified locations.

{READLN MONTH1}
{READLN MONTH2}

{RECALC} and {RECALCCOL}

{RECALC location,[condition],[iterations]} recalculates the values in location,
proceeding row-by-row.

{(RECALCCOL location,[condition] literations]} recalculates the values in location,
proceeding column-by-column.

Arguments

location is the address or name of the cell or range to recalculate, or a formula that
returns the address or name of the cell or range to recalculate.

condition is an optional argument that tells 1-2-3 to recalculate once and then repeat
the recalculation until condition is true. condition is usually a logical expression or the
address or name of a cell that contains a logical expression, but it can be any formula,
number, or address or name of a cell. 1-2-3 evaluates any condition that does not
equal 0 (zero) as true and any condition that does equal 0 (zero) as false.

154 @Functions and Macros Guide

If condition refers to a cell that contains a formula and the formula needs to be
recalculated for the {RECALC} or {RECALCCOL)} command to work correctly, be
sure the cell is in location.

iterations is an optional argument that tells 1-2-3 to perform the specified number of
recalculation passes. iterations can be a value, or the address or name of a cell that
contains a value. If iterations is 0 (zero), 1-2-3 performs the recalculation once. If you
specify the iterations argument, you must specify the condition argument.

Uses

Use {RECALC] to recalculate formulas located below the cells on which they depend.
You can also use {RECALC] to recalculate formulas located to the right and in the
same row of cells on which they depend.

Use (RECALCCOL} to recalculate formulas located to the right of the cells on which
they depend. You can also use {RECALCCOL} to recalculate formulas located in the
same column and below the cells on which they depend.

Use {RECALC} and {RECALCCOL}} to recalculate values entered by macro
commands without recalculating the entire worksheet.

Notes

When you include both optional arguments, 1-2-3 repeats the recalculation until
condition is true or until it has performed the specified number of recalculation
passes, whichever happens first.

When 1-2-3 uses {RECALC} or {RECALCCOL) to recalculate a range, it updates
formulas only in the range. To ensure that all formulas are up to date at the end of
a macro that uses {RECALC} or {RECALCCOL)}, include a {CALC} command in the
macro or press F9 (CALC) when the macro ends.

Examples

The first set of instructions in the following excerpt from a macro sets recalculation
to Manual. Other macro instructions change the value in cell D4 that the formula in
cell A9 uses. The {RECALC} command at the end tells 1-2-3 to recalculate the range
named NEWPRICES, which includes cells D4 and A9. Recalculation proceeds
row-by-row, so 1-2-3 recalculates D4 before A9, and the result is accurate.

/WGRM

{RECALC NEWPRICES}

The following example of {RECALCCOL} continuously recalculates the range named
PAYMENT, column-by-column, until the value in the cell named VAL falls below 100
or the number of recalculations equals 50.

{RECALCCOL PAYMENT,VAL<100,50}

Macro Command Descriptions 155

{RESTART}

{RESTART} cancels the return sequence of nested subroutines, ending the macro
when the current subroutine ends.

Uses

Use {RESTART]} to control whether a macro continues or ends after certain subroutine
tasks are performed. For more information on subroutines, see the description of
{subroutine} on page 158.

Use {RESTART]} to cancel a {FORM} command from within a call-table.

Notes

1-2-3 tracks the order in which nested subroutines are called up to 32 subroutines.
After a {RESTART}, 1-2-3 performs the remaining instructions in the current
subroutine, but the macro ends when the subroutine ends instead of returning
control to the calling macro. If the instructions that follow {(RESTART} in the
subroutine transfer macro control elsewhere, the macro continues.

Examples

The following excerpt from a subroutine combines {RESTART) with {IF} to cancel the
return sequence and branch to NEXTPLAN if the cell named STATUS contains the
label Not OK or a text formula that results in Not OK. If STATUS contains anything
else or is blank, macro control returns to the calling macro after 1-2-3 completes the
remainder of the subroutine.

{IF STATUS="Not OK”{RESTART}{BRANCH NEXTPLAN}

In the following example, the {FOR} command calls the subroutine BALANCE.
The subroutine stores the number you enter in cell PURCHASE and enters the
new balance in cell BAL. If the new balance is 0 or less, {RESTART} cancels the
return sequence and branches to BROKE; otherwise, 1-2-3 repeats the subroutine
BALANCE ten times, as specified in the {FOR} command. When the for-next loop
is complete, 1-2-3 returns to the instruction that follows the {FOR} command in the
calling macro.

{FOR Count,1,10,1,BALANCE}

BALANCE {GETNUMBER “Cost of purchase? ”, PURCHASE)
{LET BAL,BAL-PURCHASE}
{IF BAL<=0HRESTART}{BRANCH BROKE}

156 @Functions and Macros Guide

{RETURN}

{RETURN]} returns macro control from a subroutine to the calling macro.

Uses

Use (RETURN} in a subroutine that was called by a {subroutine} or (MENUCALL}
command.

Use {RETURN} as the then clause of an {IF} statement in a subroutine to return
directly to the calling macro without performing the else clause.

Notes

When it encounters {RETURN}, 1-2-3 returns control to the macro or subroutine that
called the subroutine and performs the instructions that follow the command that
called the subroutine. If {RETURN} is in the original calling macro, it performs as
{QUIT}.

In a subroutine called by a {FOR} command, {RETURN]} ends the current iteration of
the subroutine and immediately starts the next iteration.

If the subroutine ends with a blank cell, {RETURN} is unnecessary. Macro control
automatically returns to the calling macro.

Example

In the SAVE subroutine that follows, {GETLABEL} prompts you to type a response.
If you type N or n, the {RETURN} command forces the subroutine to return to the
calling macro before the subroutine ends. If you type Y ory, 1-2-3 saves the current
version of the file and then returns to the calling macro. If you type any other
character, 1-2-3 repeats the SAVE subroutine from the beginning.

SAVE {GETLABEL “Save file? (Y/N)”,INPUT}~
{IF @UPPER(INPUT)="N"H{RETURN}
{IF @UPPER(INPUT)="Y"}/fs~r{RETURN}
{BRANCH SAVE}

{RIGHT} and {R}

{RIGHT [number]} and {R [number]} are equivalent to pressing —.

Argument

number is an optional argument that tells 1-2-3 how many times to press —. number
is a value, the address or name of a cell that contains a value, or a formula that
returns a value. {RIGHT} without an argument is equivalent to {RIGHT 1}.

Macro Command Descriptions 157

{SETPOS}

{SETPOS offset-number} moves the byte pointer to the offset-number position in an
open text file.

Argument

offset-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value. It specifies the character position in the file to which
you want to move the byte pointer, relative to the first byte in the file. The first
character in the file is at position 0, the second at position 1, and so on.

Notes

A text file (sometimes called a print file or an ASCII file) is a file stored on disk.
If no text file is open, 1-2-3 ignores {SETPOS} and the macro continues with the next
instruction in the same cell as the {SETPOS} command. If a file is open, 1-2-3 moves

the byte pointer to the offset-number position in the text file, and the macro continues
with the instruction in the cell below the {SETPOS} command.

1-2-3 does not prevent you from placing the byte pointer past the end of the file.
Before using {SETPOS}, use {FILESIZE} to determine the last character position in
the file.

Examples

Suppose that the byte pointer is at the beginning of a text file that consists of 250
bytes and begins with the following text:

This report contains information based on last year’s performance

The command {SETPOS 10} moves the byte pointer to the letter t at the end of the
word report.

The following command, acting on the same text file, enters the value 250 in the cell
named BYTES and then moves the byte pointer to the position after the last character
in the file. If no text file is open, the macro branches to location NEXT.

{FILESIZE BYTES}
{SETPOS BYTESHBRANCH NEXT}

{subroutine}

{subroutine [arg1],larg2],...[argn]} calls a subroutine.

Arguments

subroutine is the range name (or address) of the subroutine that you want the macro
to call. The range name (or address) can refer to the first cell of the subroutine or to
the entire subroutine. It's safest to use a range name rather than a cell address for the

158 @Functions and Macros Guide

subroutine in case you insert or delete rows in the worksheet or move the subroutine.
If you specify a range for subroutine, 1-2-3 begins the subroutine in the upper left
corner of the range.

arg1 to argn are optional arguments. You can include up to 31 optional arguments.
Arguments can be values or text, including formulas and the names or addresses

of cells. {subroutine} passes the arguments to the subroutine, which must begin with
a {DEFINE} command if arguments are specified. {DEFINE} evaluates and stores
the optional arguments in worksheet cells. For more information, see {DEFINE} on
page 122.

Uses

Use subroutines to divide long macros into smaller, more specific tasks. If these tasks
are shared by several macros, using a subroutine means you only have to write the
shared task once. You can call it from all macros that use it. 1-2-3 can transfer control
from one subroutine to another to perform many different tasks during a macro.

Notes

To call a subroutine, use a {subroutine} command in the calling macro where you
want 1-2-3 to begin performing the subroutine. Specify the address or name of the
subroutine as {subroutine}. 1-2-3 temporarily passes control from the calling macro to
the subroutine when it encounters a {subroutine} command. After it performs the
subroutine, it returns to the calling macro and performs the instructions that follow
the {subroutine} command. A subroutine ends when 1-2-3 performs a {RETURN}
command or encounters a blank cell. A {QUIT} command in the subroutine stops
the macro.

One subroutine can call another subroutine. This is known as nesting. Using nested
subroutines lets you create large macro applications that are clearly structured,
accessible, and easy to revise. Nesting is limited to 32 subroutines.

When 1-2-3 encounters a {subroutine} command in a subroutine, it immediately starts
performing the new subroutine. When the second subroutine ends, 1-2-3 returns to
the subroutine that called it and finishes performing that subroutine, and then
returns control to the original calling macro. If there is more than one nested
subroutine, 1-2-3 returns to each previous subroutine until it finally returns to the
original calling macro.

If you do not want 1-2-3 to return from a particular subroutine, use {RESTART} in
that subroutine. {RESTART} cancels the return sequence that 1-2-3 tracks as it
completes nested subroutines. When 1-2-3 completes the subroutine that contains
{RESTART]}, the macro ends. For more information, see {RESTART} on page 156.

Examples

The following two macros perform the same task, but the second one uses arguments
to pass range names to a subroutine. The macros format four ranges as Currency
with two decimal places. The {RETURN} command at the end of the CURRSUB
subroutine is optional as long as the subroutine ends with a blank cell.

Macro Command Descriptions 159

The DATAPREP macro calls the subroutine FMT four times. Each time, it formats the
current cell. After each subroutine call, 1-2-3 returns to the next {GOTO} command in
DATAPREP.

DATAPREP {GOTO}QUAR1~
{FMT}
{GOTOJQUAR2~
{FMT}
{GOTOJQUAR3~
{FMT}
{GOTOIQUAR4~
{FMT}

FMT /RFC2~~
{RETURN}

In the following macro, DATAPREP specifies the same four ranges as arguments
passed to FMT. FMT stores the argument in range ONE and uses a nested subroutine
call to format each range.

DATAPREP {FMT “QUAR1"}
{FMT “QUAR2”)
{FMT “QUAR3")
{FMT “QUAR4”)

FMT {DEFINE ONE}
{GOTOHONE}~
/RFC2~~
{RETURN}

ONE

{SYSTEM}

{SYSTEM command} temporarily suspends the 1-2-3 session and performs the
specified DOS command.

Argument

command is any DOS command, including batch commands, up to 128 characters.

Notes

After DOS performs the specified command, the 1-2-3 session automatically resumes
and the macro continues.

{SYSTEM commandy} is similar to the /System command, except that control returns
from DOS automatically after command is completed. If you want to temporarily
suspend the 1-2-3 session without specifying an operating system command, use
the System command (/S) in the macro. Type exit to return to 1-2-3 and continue
the macro.

160 @Functions and Macros Guide

If you use 1-2-3 with DOS 3.0 or higher, you can precede command with an explicit
path, such as {SYSTEM “c:\bats\reports”}. If you use an earlier version of DOS, you
can include the directory that contains the program(s) you want to run in the PATH
statement in your AUTOEXEC.BAT file.

Do not use the {SYSTEM} command to load memory-resident programs such as
terminate-and-stay-resident programs (for example, the DOS PRINT program).
If you do so, you may not be able to resume 1-2-3.

Examples

The following command suspends the 1-2-3 session, runs a batch file called
COPYFILE, and returns to 1-2-3. The macro continues after the batch file is finished.

{SYSTEM “COPYFILE"}

The following command suspends the 1-2-3 session and performs the operating
system command entered in cell SYS_CMD. For example, if SYS_CMD contains the
entry C:\DOS\CHKDSK, {SYSTEM} performs a CHKDSK command (assuming the
CHKDSK command file is in the DOS directory on drive C) and then returns to 1-2-3
and continues the macro.

{SYSTEM SYS_CMD}

{TABLE}

{TABLE} is equivalent to pressing F8 (TABLE). For more information about 1-2-3
function keys, see the Quick Reference.

{UP} and {U}

{UP [number]} and {U [number]} are equivalent to pressingT.

Argument

number is an optional argument that tells 1-2-3 how many times to pressT. number is
a value, the address or name of a cell that contains a value, or a formula that returns a
value. {UP} without an argument is equivalent to {UP 1}.

Macro Command Descriptions 161

{WAIT}

{WAIT time-number} suspends a macro and displays the WAIT mode indicator until
the time specified by time-number. When the specified time arrives, 1-2-3 removes the
WAIT indicator and continues the macro.

Argument

time-number is a value, the address or name of a cell that contains a value, or a
formula that returns a value. The value must represent a future time as a 1-2-3 date
and time number. If the value represents a nonexistent time or a time that has
already passed, 1-2-3 ignores the {WAIT} command and continues to the next macro
instruction in the same cell. You can use the @functions @NOW, @TIME, and
@TIMEVALUE to specify time-number.

Uses
Use {WAIT} to let you read what is on the screen before moving to a new location.

Notes

1-2-3 uses the date and time settings on your PC to keep track of time. Be sure these
settings are correct before you use {WAIT}.

To interrupt a (WAIT} command, press CTRL-BREAK unless a {BREAKOFF} command
is in effect. 1-2-3 ignores all other keystrokes while a {WAIT} command is in effect.

Examples

The READCOL macro that follows displays the message “Press CTRL-BREAK to
stop” in the Status indicator area, moves the cell pointer down one row, and pauses

5 seconds. It repeats this process until you press CTRL-BREAK. This macro is useful to
examine a long column of entries, or to scroll through a long document while you are
reading it.

READCOL {INDICATE “Press CTRL-BREAK to stop”}
PAUSE {DOWN}

{WAIT @NOW+@TIME(0,0,5)}

{BRANCH PAUSE}

The following macro suspends the running of a macro for the amount of time
specified by @TIMEVALUE(0.012), about 17.5 minutes.

{WAIT @NOW+@TIMEVALUE(0.012)}

162 @Functions and Macros Guide

{WINDOW}

{WINDOW} is equivalent to pressing F6 (WINDOW). For more information about 1-2-3
function keys, see the Quick Reference.

Uses

Use {WINDOWH to display dialog boxes during a macro. 1-2-3 suspends the macro
when a dialog box appears, if you use {EDIT} to switch to SETTINGS mode. When
you select OK or press ENTER, 1-2-3 uses the values you specified in the dialog box
and continues to run the macro.

{WINDOWSOFF} and {WINDOWSON}

{WINDOWSOFF} stops screen updates while a macro is running.
{WINDOWSON]} cancels {WINDOWSOFF} and resumes normal worksheet display.

Uses

Use {WINDOWSOFF} when you do not want macro activity (changes flashing on the
screen), to appear. {WINDOWSOFF} also speeds up the macro because 1-2-3 does
not update the screen display.

Notes

{WINDOWSOFF} remains in effect until the macro ends or until 1-2-3 performs a
{WINDOWSON} command.

Example

The following macro uses {WINDOWSOFF} before formatting several ranges in the
worksheet, then uses (WINDOWSON} when formatting is complete. The macro
continues, resuming screen updating.

{WINDOWSOFF}

{CURRENCY FIRST_RANGE}
{PERCENT SECOND_RANGE}
{DATE THIRD_RANGE}
{WINDOWSON}

Macro Command Descriptions 163

{WRITE}

{WRITE string} copies string to the current byte pointer position in the open text file.

Argument

string is text, a text formula, or the address or name of a cell that contains a label or
a text formula.

Notes
A text file (sometimes called a print file or an ASCII file) is a file stored on disk.

When 1-2-3 performs a {WRITE} command, it evaluates string and copies the
resulting text to the open text file, starting at the current byte pointer position.

The byte pointer advances to the position after the last character written. If the byte
pointer is at the end of the file, 1-2-3 expands the length of the file to accommodate
the incoming string. A subsequent {WRITE} or {WRITELN} command begins writing
at the new byte pointer position unless you reset the pointer with {SETPOS). If the
byte pointer is in the middle of the file, the incoming string replaces existing data.

{WRITE} works only if the text file was opened with write, append, or modify access
(see {OPEN} on page 148). If no text file is open, or if the file was opened with read
access, 1-2-3 ignores {WRITE} and the macro continues with the next instruction in
the same cell as the {WRITE} command. If {WRITE} succeeds, the macro copies the
string to the text file and continues with the instruction in the cell below the {WRITE}
command.

Examples

The following macro writes this character string to the open text file.
Ben’s Dairy

If no text file is open, or if the file was opened with read-only access, the macro
branches to FAIL. Otherwise, the macro branches to REPORT.

{WRITE “Ben’s Dairy”}{BRANCH FAIL}
{BRANCH REPORT}

The following {WRITE} command writes the label from the cell named FULLNAME
to the open text file (assuming the file was opened with write, append, or modify
access). If FULLNAME contains a text formula such as +“FIRST” &"e” &“LAST”,
1-2-3 evaluates the formula and writes the resulting text in the file. (The bullet
represents one space.) If FULLNAME contains a value, 1-2-3 ends the macro with
an error message. If the range name FULLNAME does not exist, 1-2-3 writes
FULLNAME in the text file.

{WRITE FULLNAME}

164 @Functions and Macros Guide

{WRITELN}

{WRITELN string} writes string at the byte pointer position in the open text file,
adding a carriage return and line feed.

Argument

string is text, a text formula, or the address or name of a cell that contains a label or a
text formula. If you use an empty string (“”) as string, 1-2-3 writes a carriage return
and line feed.

Notes
A text file (sometimes called a print file or an ASCII file) is a file stored on disk.

When 1-2-3 performs a {WRITELN} command, it evaluates string and copies the
resulting text to the current byte pointer position in the open text file, followed by

a carriage return and a line feed. The byte pointer advances to the position after the
last character written. If the byte pointer is at the end of the file, 1-2-3 extends the
file to accommodate the incoming string. A subsequent {WRITE} or {WRITELN}
command begins writing at the new byte pointer position unless you reset the
pointer with {SETPOS}. If the byte pointer is not at the end of the file, the incoming
string replaces existing data.

{WRITELN} works only if the text file was opened with write, append, or modify
access (see {OPEN} on page 148). If no text file is open, or if the open file was opened
with read-only access, 1-2-3 ignores {WRITELN} and the macro continues with the
next instruction in the same cell as the {WRITELN} command. If {WRITELN}
succeeds, the macro copies the string to the text file and continues with the
instruction in the cell below the {WRITELN} command.

Example

The following macro writes a line to the open text file, adds a carriage return and
line feed to start a new line, and then writes four more lines that end with a carriage
return and line feed. If no text file is open, or if the text file was opened for read-only
access, the macro branches to FAIL.

{WRITE “Musical Instruments in My Band”}{BRANCH FAIL}
{WRITELN “”}

{WRITELN “Keyboard”}

{WRITELN “Saxophone”}

{WRITELN “Drums”}

{WRITELN “Guitars”}

Macro Command Descriptions 165

The /X Macro Commands

1-2-3 Release 2.3 keeps the /X commands (originally used in 1-2-3 Release 1A) for
compatibility. Each /X command has a corresponding macro command.

/X command Function Macro command
/XClocation~ Calls the subroutine at location. {subroutine}
/XGlocation~ Branches to location. {BRANCH}
/Xlcondition~... If condition is true, performs the next {IF}

instruction in the same cell. Otherwise,
skips to the next cell for further

instructions.
/XLprompt~[location]~ Displays prompt in the control panel. {GETLABEL}
Enters your response as a label in location.
/XMlocation~ Activates the macro menu at location. {MENUBRANCH}
/XNprompt~[location]~ Displays promptin the control panel. {GETNUMBER}
Enters your response as a number in
location.
XQ Ends the macro. {QUIT}
/XR Returns control from the current subroutine {RETURN}

to the main macro, or ends the current loop
through the subroutine and starts the next
loop.

Arguments

condition is a logical expression or the address or name of a cell that contains a logical
expression. (A logical expression uses one of the logical operators = <> < > <= >=
#AND# #NOT# or #OR#.) You can use any formula, number, text, cell address, or
cell name in the logical expression as condition.

location is a range name or address, or a formula that results in a range name or
address.

prompt is any text that fits in the first line of the control panel, the address or name of
a cell that contains the text, or a text formula.

Notes

Preface /X commands with {BREAK] to ensure that the macro starts in READY
mode. Do not start a /X command between steps of another 1-2-3 command.

166 @Functions and Macros Guide

Chapter 5
Sample Macros

This chapter presents several macros. The macros are short and simple, and they
provide concrete examples of how you can use macros in your everyday work. They
also illustrate programming techniques that you can apply to any macro you create.

Macro name Purpose

\G Moves the cell pointer to a different range.

\S Shifts the current row to the top of the screen.

\D Enters today’s date in the current cell.

\R Rounds a column of values to the number of decimal places you specify.
\C Creates a macro menu of column-related commands.

M Creates and prints mailing labels using records in a database.

Using the Sample Macros

The sample macros are in the file called SAMPMACS.WKI1. The Install program
transferred the SAMPMACS. WK1 file to your 1-2-3 program directory.

To Use a Sample Macro

1.
2.

Start 1-2-3.

If necessary, use /File Directory to make the 1-2-3 program directory the
current directory.

. Use /File Retrieve to retrieve the SAMPMACS.WK1 worksheet.
. Move the cell pointer to the macro you want to run.

. Start the macro. To do this, hold down ALT while pressing the letter of the

macro’s name. For example, to start macro \G, press ALT-G.

You can also use ALT-F3 (RUN) to list the names of all macros in the worksheet.
To start a macro this way, select a macro name from the menu and press ENTER.

. (Optional) Copy a macro to your worksheet using /File Combine Copy.

Make sure you reassign range names to the macro (and its subroutines) that
you copy; 1-2-3 does not preserve the range names in the copy.

. (Optional) Save the macros in a macro library to use with any worksheet

(see “Saving Macros in a Library” on page 183).

167

Goto Macro (\G)

In a large worksheet that has different data areas (such as an income statement with
a balance sheet and various cost analyses), using pointer-movement keys to move
from one area to another can be time-consuming. If you assign range names to the
different areas, you can use macro \G to move the cell pointer more quickly from
area to area.

Mz 0973 "\ ~ s e

W B c b E F G H
NG (GOTOMNAME 2} Press GOTO then NAME twice to List ranges

oS WN

To Use Macro \G
1. Start macro \G.

2. Highlight the name of the range you want to move to and press ENTER.

Explanation of Macro \G

{GOTOHNAME 2} presses F5 (GOTO) and then F3 (NAME) twice to display a full-screen
list of range names in the worksheet.

Row-Shifting Macro (\S)

Macro \S moves the row that contains the cell pointer to the top of the screen.

168 @Functions and Macros Guide

To Use Macro \S

1. Move the cell pointer to the row you want to move to the top of the screen.
2. Start macro \S.
3. (Optional) Modify the \S macro to use with your worksheet.

If your screen displays more than 20 rows, specify the number of rows your
screen displays minus 1. For example, if your screen displays 38 rows, the
macro should read {D 37H{U 37}.

Explanation of Macro \S

{D 19}{U 19} moves the cell pointer down 19 rows and then back up 19 rows, shifting
to the top of the screen the row the cell pointer was in when you started the macro.
(The macro instructions {D} and {U} are equivalent to {DOWN} and {UP}.)

Date Macro (\D)

Macro \D enters today’s date in the current cell by converting the result of @NOW
to a value. Use the macro to document the data in a worksheet, insert the date in a
memo, or create an entry for a print header or footer.

To Use Macro \D

1. Move to a blank cell.
2. Start macro \D.

3. If 1-2-3 displays asterisks, use / Worksheet Global Column-Width, /Worksheet
Column Set-Width, or the column macro described on page 172 to widen the
column to 10. The asterisks will disappear and 1-2-3 will display the current
date. (You can also modify this macro to check the current column width with
@CELLPOINTER and, if necessary, widen the column. For example, use
{IF @ CELLPOINTER(”"width”)<10} / wcs10~.)

Sample Macros 169

Date number for today’s
date and time

B2: (Dp1) [W10] 33329.584745 READY

CE R RLN

01-Apr-91 SALES REPORT

meug_\

Column width set to 10

Cell formatted as Date 1

Explanation of Macro \D

e {PANELOFF}{WINDOWSOFF] freezes the control panel and worksheet area,
preventing flashing on the screen during the macro and allowing the macro to

work at maximum speed.
e /rfd1~ formats the current cell as Date 1 format.

o @NOW{CALC}~ types @NOW, converts @NOW to its current value, and enters
the value in the current cell.

o {WINDOWSON}{PANELON} unfreezes the control panel and worksheet area
prior to ending the macro.

Rounding Macro (\R)

Macro \R rounds a column of values by converting the values to @ROUND
formulas, using the number of decimal places you specify.

A13: [W111 'R : READY

c D E F G

First cell in subroutine PLACE
First cell in rounding loop

170 @Functions and Macros Guide

To Use Macro \R

1. Move the cell pointer to the first cell in the column of values you are rounding.

2. Start macro \R.

B1: (6) [W10] 24.759 B6: LW10] SROUND(11456.45,1)

;usun -
&

Unrounded values Values rounded to one decimal place

Explanation of Macro \R

{GETLABEL “Round to how many decimal places? ”,PLACE} prompts you for the
number of decimal places to round the values, waits for you to type a number and
press ENTER, and then enters that number as a label in cell PLACE for use later in the
macro. You must use {GETLABEL} because macro instructions are labels so anything
you want the macro to use must also be a label.

The rounding loop R_LOOP converts the value in the current cell to an @ROUND
formula. For example, it converts 24.759 to @ROUND(24.759,1), as follows:

{EDITHHOME}@ROUND(presses F2 (EDIT) to begin editing the current cell’s
contents, moves the cursor to the beginning of the entry, and inserts @ROUND(
in front of the entry.

{END}, moves the cursor to the end of the entry and types a comma.

{PLACE] calls subroutine PLACE (located in cells B20..B21). PLACE uses the
number you specified in the {GETLABEL} command for the decimal-place
argument in the @ROUND formula. {RETURN]) ends the subroutine, so macro
control shifts back to the main macro where)~ completes and enters the
@ROUND formula.

{DOWN} moves the cell pointer down one cell.

{IF @CELLPOINTER(“type”)="v"} tests the new cell’s contents. If the cell
contains a value, the macro continues to the next instruction, {BRANCH
R_LOOP}, which branches macro control to cell R_LOOP (the second cell in

the macro). The macro then repeats the value-to-@ROUND-formula conversion.
If the cell is blank or contains a label, the macro skips to the next line, where
{QUIT} ends the macro.

Sample Macros 171

Column Macro (\C)

1-2-3 has several commands for adjusting columns; remembering which command to
select for which type of column change can be confusing. You can use macro \C to
change the width of individual columns, change the width of columns globally, reset
columns to the default column width, hide and redisplay columns, and/or insert and
delete columns, all from one macro menu.

Main menu

A26: [W91 '\C READY
B_ b E F G H 1 <
2 \C NUCALL COL_MENU}Display column-macro menu »
gg R ~ |Restart column macro :
27 COL_MENU Global Set Reset Hide Unhide AddCol DelCol Quit 7
28 Set gloSet Reset a Hide a RedisplaInsert aDelete atnd macro —————— Macro menu
% {GLOBAL(SET{RESET} {HIDE} (UNHIDE}ADDCOL}{DELCOLIQUIT} _ |
3 GLOBAL /ugc(2)” Set global colum width to user-specified width |
33
3%
35 .
36 V
37 ——————— Subroutines for menu items

/wic{?)” Insert user-specified range of colums
/wdc(2)” Delete user-specified range of colums |

To Use Macro \C
1. Start macro \C.

1-2-3 displays a macro menu.

M: 091 N6 -
Set global colum width for worksheet

2. Select an item from the menu.

After 1-2-3 completes the selected subroutine, it returns to the instruction
following the {MENUCALL} command; in this case, (BRANCH \C}, which
redisplays the column macro menu.

3. To end macro \C, select Quit from the macro menu.

172 @Functions and Macros Guide

Explanation of Macro \C

{MENUCALL COL_MENU} displays the macro menu stored in range COL_MENU.
The range has three rows:

e The first row contains the items that will appear in the second line of the control
panel: Global, Set, Reset, Hide, Unhide, AddCol, DelCol, and Quit. Each item is
in its own column.

* The second row contains the descriptions that 1-2-3 displays in the third line of
the control panel as you highlight each menu item. For example, “Set global
column width for current worksheet” is the description for the Global menu item.

* The third row contains the macro instructions 1-2-3 performs after you select a
menu item. Depending on the menu item you select, the third row either calls a
subroutine (GLOBAL, SET, RESET, HIDE, UNHIDE, ADDCOL, or DELCOL) or
ends the macro (QUIT).

GLOBAL

SET

RESET

HIDE

UNHIDE

ADDCOL

DELCOL

/wgc selects /Worksheet Global Column-Width. {?} suspends the
macro to let you specify a column width, and ~ completes the
command.

/weccs selects /Worksheet Column Column-Range Set-Width.
{?}~{?}~ suspends the macro twice to let you specify a range of
columns and a column width (the tildes enter your specifications
and complete the command).

/weccr selects /Worksheet Column Column-Range Reset-Width.
{?} suspends the macro to let you specify the range of columns
whose width you want to reset, and ~ completes the command.

/wch selects /Worksheet Column Hide. {?} suspends the macro to
let you specify the range of columns to hide, and ~ completes the
command.

/wcd selects /Worksheet Column Display. {?} suspends the macro
to let you specify the range of columns to redisplay, and ~
completes the command.

/wic selects /Worksheet Insert Column. {?} suspends the macro to
let you specify the range of columns to insert, and ~ completes the
command.

/wdc selects /Worksheet Delete Column. {?} suspends the macro
to let you specify the range of columns to delete, and ~ completes
the command.

NOTE If you run the ADDCOL or DELCOL subroutine in the
SAMPMACS.WK1 worksheet, specify columns other than A through L.

Sample Macros 173

Mailing Labels Macro (\M)

Macro \M creates and prints mailing labels.

AGT: [W71 *\M READY
R B cC b E F G H 1 <
2\ /pprLABEL " oougaq Set LABEL as print range »
48 P_LOOP {IF GCELLPOINTER("type")="b"HQUIT} Check current cell A
49 /c{RIGHT 5} LAST™ Copy current record v
50 {RECALC LABEL} Recalculate mailing Label str 7
51 /ppgq{DOWN} Print mailing label
52 {BRANCH P_LOOP} Restart print loop

To Use Macro \M

1. Enter the names and addresses in a database.

c
90 Stratford Drive
1055 W. 7th Street
1 Camelback Road

938 Lafayette Street
1990 Post Oak Blvd,

A sample database

2. Set up the cells to which the text formulas refer. To do this, copy the field names
from the name-and-address database to another area of the worksheet. For
example, in the following illustration, the field names in A55..F55 have been
copied to A63..F63.

C i D

/RNLD used to assign names to cells below

3. Use /Range Name Labels Down to assign each field name as the range name for
the cell below it (in the illustration above, to A64..F64).

174 @Functions and Macros Guide

4. Choose a column for the print range.

5. Use /Worksheet Column Set-Width to set the column width of the print range
column to 40 (or any setting that will be at least one character wider than the
longest mailing label). In this example, column I is the print range column.

6. Create your mailing label in the worksheet. To do this, enter the following
formulas in three consecutive cells in the print range column. (Each e (bullet)
represents a space. The @S function prevents blank cells in a database record
from causing formulas to display and print ERR.)

@S(FIRST)&“e” &@S(LAST)
@S(STREET)
@S(CITY)&” 0" &@S(STATE)& “ee” &@S(ZIP)

7. Select /Range Name Create.

8. Enter LABEL as the name for the range; and as the range to name, specify a
one-column range that includes the three formulas and as many additional rows
as are needed for the printer to skip from one mailing label to the next. In this
example, range LABEL, 165..173, includes six extra rows.

I73: Cwe03 POINT
Enter name: LABEL ‘ Enter range: 165..173

65 LABEL aSCFIRST)R" "&aSCLAST)
66 : SCSTREET)
& aSCCITY)R", "RaS(STATE)R" "8as(ZIP)

q4pva

Naming the print range LABEL

NOTE Cells that contain the formulas are formatted as Text so you can see
them; leave the formulas as they are in your worksheet.

9. Move the cell pointer to the leftmost cell in the first record (for example, cell A56).
10. Start macro \M.

Explanation of Macro \M
* /pprLABEL~ selects /Print Printer Range and enters LABEL as the print range.

¢ oougaq selects Options Other Unformatted for no top-and-bottom margins or
page breaks, leaves the /Print Printer Options menu, selects Align to align the
paper in the printer, and leaves the /Print menu.

e (IF @CELLPOINTER("type”)="b"} checks to see whether the current cell is blank
(a blank cell signals the end of the database records).

Sample Macros 175

o If the cell is blank, the macro ends with {QUIT}. Otherwise the macro continues
to /c{RIGHT 5}~LAST~, which copies the current record to cells LAST, FIRST,
STREET, CITY, STATE, and ZIP, the cells that the mailing-label text formulas use.

e {RECALC LABEL} recalculates the mailing-label text formulas using the new
information in cells LAST, FIRST, STREET, CITY, STATE, and ZIP.

e /ppgq{DOWNHBRANCH P_LOOP} selects /Print Printer Go Quit to print the
current mailing label and then leave the /Print menu, moves the cell pointer
down one row, and branches back to cell P_LOOP to create the next mailing label.

176 @Functions and Macros Guide

Chapter 6
Using the Macro Library Manager
Add-In

This chapter describes the Macro Library Manager add-in. It provides steps for
using Macro Library Manager, and for creating, updating, and working with macro
libraries.

Macro Library Manager lets you create macro libraries and work with them. Asa
1-2-3 add-in program, Macro Library Manager runs in 1-2-3, thus increasing the
power and versatility of 1-2-3. Because Macro Library Manager is an add-in, it does
not have to be stored in your computer’s memory all the time as does 1-2-3. Using
the Add-In commands, you can attach Macro Library Manager when you need to
use a macro library and detach it when you need more memory for completing other
tasks.

Macro Library Manager has its own commands that you can use to create and edit
macro libraries. Other commands let you load libraries into memory, remove them
from memory, or list the range names in a library.

What Is a Macro Library?

A macro library makes a set of macros available for use in any worksheet. To store
macros in a library, you specify the range that contains the macros from a 1-2-3
worksheet. Macro Library Manager stores the range in memory (in an area that is
separate from the worksheet) and saves it in a file on disk with a .MLB extension
(called a library file).

A macro library can make your work easier and more efficient in the following ways:

* Macros are independent of worksheets that store applications, so you can use
library macros and have your worksheets free for other data.

® Macros are stored in one location so you can update them centrally, instead of
updating individual worksheets.

¢ Tasks you perform routinely with more than one worksheet are independent of all
worksheets. For example, a macro that performs the same financial analysis on
data in several worksheets or a graph macro that graphs sales data in several
worksheets.

e Macros you create are available for others to use.

177

Starting Macro Library Manager

To start Macro Library Manager, you attach the add-in into your computer’s
memory. You then invoke it to use Macro Library Manager commands.

To Attach Macro Library Manager
1. Select /Add-In Attach.

1-2-3 displays a menu of add-ins (*.ADN) in the current directory. Macro Library
Manager is in a file called MACROMGR.ADN.

2. Specify MACROMGR.ADN as the add-in to attach.

If MACROMGR.ADN is not in the menu, specify the drive and/or directory that
contains this file. Press ESC to clear the currently displayed file names, edit the
drive and/or directory name, and then press ENTER.

3. Select the key you want to use to invoke Macro Library Manager:

No-Key Does not assign Macro Library Manager to any key.

7 Assigns Macro Library Manager to ALT-F7 (APP1).

8 Assigns Macro Library Manager to ALT-F8 (APP2).

9 Assigns Macro Library Manager to ALT-F9 (APP3).
10 Assigns Macro Library Manager to ALT-F10 (APP4).

4. Select Quit to return 1-2-3 to READY mode.

To Invoke Macro Library Manager

How you invoke Macro Library Manager depends on whether you selected No-Key
or a key when you attached Macro Library Manager.

If you selected Do this

No-Key Select /Add-In Invoke, and then select MACROMGR.ADN from the
menu of attached add-ins that appears.

A key Press the key you specified. For example, if you selected 7, press
ALT-F7 (APP1).

The Macro Library Manager menu appears.

NOTE You can attach Macro Library Manager automatically whenever you start
1-2-3. To do this, select /Worksheet Global Default Other Add-In Set, specify an
add-in setting (1, 2, 3, 4, 5, 6, 7, or 8), and then specify MACROMGR.ADN as the
add-in to attach automatically. You will also need to use /Worksheet Global Default
Update to update the 1-2-3 configuration file.

178 @Functions and Macros Guide

Rules for Using a Macro Library

The rules in this section apply to anyone who wants to work with macro libraries.

When to Attach and Detach Macro Library Manager

You must attach Macro Library Manager before you can save data in a library, load
a library file into memory, or run a macro in a library.

If you detach Macro Library Manager during a work session, the macro libraries you
have saved or loaded disappear from memory. The library files already on disk are
not affected.

Memory Management
* A macro library can contain up to 16,376 cells.
* You can have up to 10 macro libraries in memory simultaneously.

* When you specify the range you want to save in a library, Macro Library Manager
allocates a cell in conventional memory for each cell in the range, even if it is
empty. To save memory, make your macros as compact as possible and specify
ranges with as few empty cells as possible.

* Load only the libraries you need into memory and remove them when you are
finished.

Duplicate Library Names

You can have several macro libraries in memory at the same time, but the macro
libraries must have different names. If you save a library using the name of an
existing library in memory or on disk, a prompt appears asking whether you want
to write over the existing library.

Ranges with Links to Other Files

A macro library cannot include ranges that reference, or link, to data in another file.

Using the Macro Library Manager Add-In 179

Rules for Macro Commands in a Macro Library

The rules in this section apply to those who want to create macros to save in a macro
library.

Range Names

e Refer to a named range in a macro library to run a macro or to perform a macro
command. For example, the macro command {LET QTR2,1.5*QTR1} can be in the
worksheet or in any library. The ranges QTR1 and QTR2 can be in a library.

e You cannot use library range names to specify a location with 1-2-3 commands,
for example, /Move and /Copy.

e Data in a library that you want a macro to use must be in a named range.

e When you specify a range either to start a macro or as an argument in a macro
command, 1-2-3 searches the worksheet first, then the first macro library that is in
memory. If the range name is not in that library, 1-2-3 looks for it in the next
library in memory, and so on, until it finds the named range. If 1-2-3 cannot find
the range, an error results.

e Avoid using the same range name in more than one library. If you have two
ranges with the same name, 1-2-3 uses the first one it finds, so you may not get the
macro you wanted.

Executing Subroutines and Menus in a Library

The following macro commands can use subroutines, menus, and other named
ranges in all libraries. You can put these macro commands in a worksheet or in any
library, regardless of where the range that they reference is stored.

{BRANCH} {MENUBRANCH]}
{DISPATCH} {MENUCALL}
{FOR} {ONERROR}

The following illustration shows macro commands that reference two libraries. Part
of a macro in a worksheet makes a subroutine call to a routine in Library 1 called
SUB1. SUBI, in turn, makes a call to a menu in Library 2. The menu choices appear
in the worksheet in the control panel. The user chooses a command from the menu.
The subroutine performs the command and returns control to SUB1 in Library 1.
SUBI continues processing and returns to the macro in the worksheet.

180 @Functions and Macros Guide

k Library Name List)
Library Name List

[MENU1]
| sue1 |

SR] irst Choice [sec
. . i Eirst 1Sec
define b3 H i
. |
; / |)
First Choice {menucall menu1}|” {return} {re
First Second Third SR | <
A B c D E Library 2
1 ity .
2 {suB1} {return)
3 seed
4 Library 1
5
Worksheet

Macro Commands that Reference Data

You can reference data in libraries, either from the worksheet or from another library,
using macro commands that accept range arguments. These commands can use
range references in three ways:

® Macro commands can move data between libraries, or between the worksheet
and a library. In the statement {GET CHOICE], for example, CHOICE can be in a
library or in the worksheet. The following {LET} command moves data selected
from the range named SALES in a library to cell A1 in the worksheet.

{LET A1,@INDEX(SALES,1,2)}

* A macro can use cell values in a library or in the worksheet. For example, in the
following statements, cell TEST_VAL can be in the worksheet or in a library.

{IF TEST_VALH{BRANCH RTN_1}
{BRANCH RTN_2}

* Macro commands may act on the contents of the ranges specified as arguments.
For example, {BLANK CAPTURE_TOT} erases the contents of a range named
CAPTURE_TOT. CAPTURE_TOT can be in a library or in the worksheet.

Macro Commands that Contain Formulas

Formulas in a macro library can refer only to cells or ranges in the same library; the
cells cannot be in a different library or in the worksheet. For example, if a formula
references a range called SALES, SALES must be in the same library as the formula.
Similarly, formulas in the worksheet cannot refer to cells or ranges in a library.

1-2-3 adjusts cell or range references in a library formula to maintain their relative
addresses. For example, when a formula is in the worksheet it may reference a cell
whose relative address is two columns to the left and one row up from the formula.

Using the Macro Library Manager Add-In 181

After you move the formula to a library, it will continue to search two columns to the
left and one row up in the library for the cell that it references.

NOTE When you save a range in a library, any formulas in the worksheet that were
not saved in the library and that reference cells in the range will continue to refer to
the worksheet cells, which are now empty.

Recalculation of a Formula Within a Library

A formula is automatically recalculated

e When you save it in a library

e When a macro instruction changes a cell in a library

e When you use {RECALC} or {(RECALCCOL)} to calculate a library range

1-2-3 calculates formulas in libraries in Natural order, except when you use
{RECALC} and {RECALCCOL}. You cannot turn off recalculation of formulas in
a library by choosing manual recalculation in the worksheet.

Libraries that Contain /File Retrieve Commands

You can create a library that contains a macro that issues /File Retrieve and provides
additional instructions after it retrieves the file. If, however, the file that the macro
retrieves contains an auto-execute macro, the auto-execute macro will run instead of
the library macro.

For example, a library may contain a macro that retrieves the file SALES and sets the
column width to 10. If SALES already contains an auto-execute macro that sets the
column width to 15, the auto-execute macro will take over and the worksheet’s
columns will be set to 15. You can use /Worksheet Global Default Autoexec No to
prevent an auto-execute macro from running.

A macro library may contain an auto-execute macro. 1-2-3 runs the auto-execute
macro when you retrieve any worksheet.

Creating a Macro Library

To create a macro library, you enter macros and data in a worksheet. You then use
Macro Library Manager to name the library and specify the range you want it to
contain. Macro Library Manager moves the range to the library, removing it from
the worksheet.

To Create a Macro Library

1. Attach Macro Library Manager. (See “Starting Macro Library Manager” on page
178.)

2. Select /Worksheet Erase to start with a blank worksheet.

182 @Functions and Macros Guide

3.
4.

5.

Enter the macros and data you want to store in the library.

Use /Range Name Create to assign unique names to the macros. For more
information about macro names, see “Naming a Macro” on page 98.

Test your macros in the worksheet so you know they work correctly.

Saving Macros in a Library

After you create the macros, use Macro Library Manager to move the macros to
a library in memory as well as to a library (MLB) file on disk.

Macro Library Manager removes the range that contains your macros from the
worksheet. Range names associated with the cells no longer refer to the worksheet;
they now refer to library locations.

To Save Macros in a Library

1.
2.

Invoke Macro Library Manager.
Select Save.

Macro Library Manager displays a menu of the macro libraries (files with the
-MLB extension) in the current directory.

. Specify the name of the library in which you want to save the macros or data

ranges.

You can specify a path to store the library in another directory. You do not need
to specify a file extension because Macro Library Manager automatically adds
‘MLB. If the library already exists, Macro Library Manager asks whether you
want to replace it.

- Specify the range that contains the macros and data you want to save in the

macro library.

The range can contain a single macro, a number of macros, a combination of
macros and data (the data can include formulas), or just data. Make sure you
include any ranges and cells that the library formulas will reference. A library
formula can refer only to cells or ranges in the same library.

. (Optional) Specify a password (up to 80 characters).

You must remember the exact combination of uppercase or lowercase letters
you type, or you will not be able to edit the library in the future. Anyone will,
however, be able to use the library without specifying the password.

The macros are now saved in the library.

Using the Macro Library Manager Add-In 183

Using a Macro in a Library

You start a macro stored in a macro library just as you start a macro in any
worksheet.

1-2-3 runs the macro from the macro library as if the macro were stored in the
worksheet. In addition, 1-2-3 refers to the macro library for any {subroutine},
{BRANCH]}, {DISPATCH}, {FOR}, {ONERROR}, {MENUBRANCH}, and
{MENUCALL} macro commands, unless the worksheet contains routines with the
same name(s).

When you start Macro Library Manager, it can load a macro library into memory
automatically. To do this, specify the name AUTOLOAD.MLB when you save the
macro library. No macros in the AUTOLOAD.MLB library will be executed
automatically (not even \0 macros), but they will be ready for you to use.

To Use a Macro in a Library

1. Retrieve the worksheet in which you want to use the macros.

2. Start the Macro Library Manager. (See “Starting Macro Library Manager” on
page 178.)

3. Select Load.

Macro Library Manager displays a menu of files with a .MLB extension in the
current directory.

4. If you want to display libraries in another drive and/or directory, press ESC to
clear the file names, edit the drive and/or directory name, and then press ENTER.

5. Specify the library you want to load.

If a library with the name you specify is already loaded, you can choose to write
over the library already in memory.

6. If necessary, move the cell pointer to the cell where you want the macro to start.
7. Start the macro:

Backslash macros — Hold down ALT and press the single letter of the macro
range name.

Range name macros — Press ALT-F3 (RUN) and then select the macro name from
the menu that appears. Optionally, you can then press F3 (NAME) to display a
full-screen menu of range names. 1-2-3 lists the worksheet’s range names
followed by the range names in each macro library that is currently loaded.
When you highlight a worksheet range name, 1-2-3 displays its range
coordinates. When you highlight a library range name, 1-2-3 displays the name
of its library.

184 @Functions and Macros Guide

Making Changes to Macros in a Library

Macro Library Manager lets you copy a macro library from memory into

the worksheet so you can make changes to the library or use its contents in the
worksheet. Macro Library Manager leaves a copy of the library in memory and
in the library (MLB) file on disk.

To Change Macros in a Library

1.

Start Macro Library Manager. (See “Starting Macro Library Manager” on
page 178.)

. Select Edit.

Macro Library Manager displays a menu of the libraries in memory. The libraries
appear in the order in which you saved them or loaded them from disk during
the current work session.

. Specify the library you want to edit.

- If the macro library is password-protected, type the password and press ENTER.

You must type the same combination of uppercase and lowercase letters that
you used when you created the password.

- A prompt appears asking you to specify the action you want 1-2-3 to take if

any range names in the library match range names in the worksheet. Select
one of the following options:

Ignore Uses range names in the worksheet instead of those in the
library.

Overwrite Uses range names in the library instead of those in the
worksheet.

- Specify an unprotected range in the worksheet for the library. You need to

specify only the cell for the upper left corner of the range.

CAUTION Make sure that the range you specify in the worksheet is blank or
contains unimportant data because Macro Library Manager writes over existing
data when it copies the library into the worksheet. If you accidentally write over
existing data and the undo feature is on, press ALT-F4 (UNDO) immediately to
restore the worksheet to its original state.

Edit the contents of the library in the same way as you edit worksheet data: by
changing it, erasing it, or adding to it.

. Save the edited library if you want to use it in the future. (For more information,

see “Saving Macros in a Library” on page 183.)

Using the Macro Library Manager Add-In 185

Keep the following information in mind when you change macros in a library:

e You can use the same information in several worksheets. For example, if you
have a template for your monthly budget that you want to use in individual files,
you could retrieve each file and use Edit to copy the template into each
worksheet.

e When you save a library you have edited, Macro Library Manager treats it as if it
were loaded into memory for the first time. A newly edited library appears last
when Macro Library Manager lists libraries that are in memory. When you run a
macro, Macro Library Manager will search this library for range names after it
searches the worksheet and all other libraries.

Removing a Macro Library from Memory

When you remove a macro library from memory, Macro Library Manager leaves a
copy of the library on disk.

To Remove a Macro Library from Memory

1. Select Remove.

Macro Library Manager displays a menu of the libraries in memory. The libraries
appear in the order in which you saved them or loaded them from disk during
the current work session.

2. Specify the library you want to remove.

Macro Library Manager removes the library from memory.

TIP To delete a library file from disk, select /File Erase Other, press ESC, type *.mib,
press ENTER, and select the library you want to delete.

Using Macro Library Manager on a Network

Although Macro Library Manager does not support network use, you can
keep libraries on a network file server for shared use. If, however, you want to edit
the contents of the library, coordinate your efforts with others on your network.

CAUTION If both you and another person are editing the same library, one set of
changes will be lost. If you save your changes before the other person, the other
person’s changes will eventually replace yours, and vice versa.

186 @Functions and Macros Guide

Macro Library Command Summary

The Macro Library Manager commands let you create and manage the macro
libraries that you use with 1-2-3. The Macro Library Manager menu appears when
you invoke the add-in.

Command Task

Edit Copies the contents of a macro library in memory to a range in the
worksheet so you can make changes to the library.

Load Copies the contents of library (.MLB) file on disk into memory so you can
use the library.

Name-List Enters, in the worksheet, a list of the range names contained in a macro
library.

Quit Leaves the Macro Library Manager menu and returns you to 1-2-3.

Remove Erases a macro library from memory.

Save Moves the contents of a range and its range names into a macro library in

memory as well as to a library (.MLB) file on disk.

Using the Macro Library Manager Add-In 187

Index

Symbols

. (period), argument separator,
2,3,92,94

{2}, 111 to 112

, (comma), argument separator,
2,3,92,94

; (semicolon), argument
separator, 2, 3, 92, 94

“ (empty string), 10, 13, 56, 59,
72,74, 86,128, 141, 143,
144, 165

{ (open brace), 92, 93

{{} and {}}, 112

} (close brace), 92, 93

@?,16

@@,15to0 16

/X commands, 166

\ (backslash), macro names, 98

{~}, 112

~ (tilde), 93, 112

A

{ABS}, 112
@ABS, 17
Absolute value, 17
Access type (files), 149
@ACOS, 1710 18
Add-in @function, testing for,
52

Add-in @functions, 5
Adding, 79 to 80

field values, 39 to 40
ALT-F2 (STEP), 103 to 104
ALT-F3 (RUN), 100, 104, 105
ALT-F4 (UNDO), 99, 104
ALT-F5 (LEARN), 92, 104
Amortized payments, 66 to 67
Angle, arc tangent, 19 to 20
Annual interest rate, 29, 67, 70
Annuity

calculating, 9

due, 8, 45

future value, 45

ordinary, 8, 45

payments from, 66
{APP1}, 113
{APP2}, 113
{APP3}, 113

{APP4}, 113
{APPENDBELOW}, 113 to 115
{APPENDRIGHT]}, 113 to 115
Arc cosine, 17 to 18
Arc sine, 18
Arc tangent, 19 to 20
Arguments, 1,92
and blank cells, 4
for database statistical
@functions, 6
for financial @functions, 8
for logical @functions, 10
for mathematical @functions,
10
for statistical @functions, 12
for string @functions, 13
@functions, 2 to 4
macro commands, 93 to 94
nested, 2
optional, 2
passed to a subroutine,
122t0 123
string, 2, 3, 95, 111
value, 95, 111
Argument separators, 3
changing, 2, 92
defined, 2, 92
macro, 94
@ASIN, 18
Asset, depreciation allowance,
34 to 35, 75 to 76, 80 to 81
@ATAN, 19
@ATAN2, 19 to 20
Attribute
argument for @CELL,
22t023
argument for @functions, 4
assigned to a cell, 22 to 23
removing, 25 to 26
Auto-execute macro, 100
in macro library, 182
Worksheet Global Default,
100
AUTOLIB.MLB, 184
Average, 21, 31 to 32
variance from, 40 to 41,
87 to 88
@AVG, 21

B

Backslash names, 98
{BACKSPACE], 115
Base 10 numbers, 57 to 58
{BEEP}, 110, 115 to 116

in example, 24
(BIGLEFT]}, 116
{BIGRIGHT]}, 116
{BLANK}, 116 to 117
Blank cell, 28

and @AVG, 21

and @MAX, 58

and @MIN, 60

and @SUM, 79

as location argument, 4

for a learn range, 104

to end a macro, 92, 97
Boolean conditions, evaluating,

9

{BORDERSOFF}, 117
{BORDERSON}, 117
Braces, 92
{BRANCH]}, 117 to 118,171

compared with {GOTO}, 117

in example, 24, 28

with {IF}, 117
Branching, 117 to 118

in response to an error,

147 to 148

{BREAK]}, 118
{BREAKOFF}, 101, 118 to 119
{BREAKON}, 118 to 119
Bulffer, typeahead, 143
Byte pointer

moving, 158

position of, 137

C

{CALC}, 119
Calculation
decimal portion of date
number, 7
flagging errors, 42
in @ISNUMBER, 54
preventing errors, 53
remainder, 61
text only, 74
unavailable data, 53 to 54, 63

189

Calling a subroutine, 159
Calling macro, returning to, 157
Canceling a macro, 101
Capital budgeting, 9
Capitalization
@LOWER, 58
@PROPER, 67
@UPPER, 85 to 86
Cash flows, 64 to 65
@CELL,22t023
Cell
addresses, 3
attributes, 22 to 23
changing settings, 23
counting, 28, 33 to 34
location of current, 24
obtaining information about,
22t023
Cell contents
erasing, 116 to 117
label, 55, 74
numeric, 54 to 55, 62
obtaining, 15 to 16, 25,
46 to 47,49, 88 to 89
testing for, 54 to 55
text, 55, 74
@CELLPOINTER, 23 to 24, 171,
175
@CHAR, 24
Characters
capitalization, 58, 67, 85 to 86
code for, 24, 26
comparing, 42 to 43
converting to number, 31,
83 to 84
counting number of, 56 to 57
extracting, 44
finding, 44 to 45, 56, 59,
71t072
manipulating with string
@functions, 13 to 14
repeating, 70
replacing, 44, 71
retrieving, 56, 59, 71 to 72
Checking entries, 23, 42
@CHOOSE, 25
@CLEAN, 25 to 26
{CLOSE}, 120
Closing a text file, 120
@COPDE, 26
Code
character, 24, 26
number, 26
@COLS, 27
Column, number in a range, 27
Column letters, suppressing
display of, 133 to 134

190 Index

Column width, set with

macros, 172 to 173
Columnwise recalculation,

154 to 155
Comma, as argument separator,

2,92
Commands

example in macros, 93
Range Name Create, 98
Range Name Labels, 98
Comments, 99
Common logarithm, 57 to 58
Comparing two sets of

characters, 42 to 43
Compound growth or loss,

@LN to calculate, 57
Compound term of an

investment, 29
Condition argument, 3, 94
Conditional formulas

@FALSE, 44
@TRUE, 85
Conditional processing,

140 to 141
{CONTENTS}, 120 to 122
Control line, freezing, 150
Control panel, freezing, 170
Control panel area

disabling, 150
enabling, 150
Copying
data as a label, 120 to 122
from a text file, 152 to 154
to a text file, 164 to 165
Copying data
with {APPENDBELOW},
113 to 115
with {APPENDRIGHT},
113to 115
@COS, 27 to 28
Cosecant, 75
Cosine, 27 to 28
inverse, 17 to 18
Cotangent, 81
@COUNT, 28
Counting entries, 28, 33 to 34
Criteria argument, 6, 32
@CTERM, 29
CTRL-BREAK, 101, 104
disabling, 118 to 119
in a for-next loop, 127
CTRL-F1 (BOOKMARK), 104
Current cell, obtaining
information about, 23 to 24

D

Data
checking, 23
erasing, 116 to 117
Data manipulation macro
commands, 106
{APPENDBELOW},
113 to 115
{APPENDRIGHT], 113 to 115
{BLANK], 116 to 117
{CONTENTS}, 120 to 122
{LET}, 142 to 143
{PUT}, 151 to 152
{RECALC}, 154 to 155
{RECALCCOL}, 154 to 155
Database, 5

average value in field,

31to032

criteria for, 6

field in, 6

input range, 6

offset number, 2
Database statistical @functions,

5to7

arguments for, 6

compared with statistical

@functions, 5
@DAVG, 31 to 32
@DCOUNT, 33 to 34
@DMAX, 35 to 36
@DMIN, 36 to 37
@DSTD, 37 to 39
@DSUM, 39 to 40
@DVAR, 40 to 41

@DATE, 30
Dates
current, 8
entering, 30
formats, 7
@functions, 7
Date and Time @functions,
7to8
current date and time,

63 to 64
@DATE, 30
@DATEVALUE, 31
@DAY, 32 to 33
day argument, 33
@HOUR, 47 to 48
@MINUTE, 60 to 61
@MONTH, 62
month argument, 62
@NOW, 63 to 64

@SECOND, 74
@TIME, 83
@TIMEVALUE, 83 to 84
@YEAR, 90
year argument, 90
Date numbers, 7, 30 to 31
@DATEVALUE, 31
@DAVG, 31 to 32
@DAY, 32 to 33
Day of month, determining,
32to 33
@DCOUNT, 33 to 34
@DDB, 34 to 35
Debugging, macros, 101 to 103
{DEFINE}, 122 to 123
Degrees
converting radians to, 18
converting to radians, 27
{DELETE}, 124
Depreciation, 8
double-declining balance
method, 34 to 35
straight-line, 75 to 76
sum-of-the-years’-digits,
80 to 81
Dialog box, 93, 101, 163
Discounting to present value,
64, 67 to 68
{DISPATCH], 124
@DMAX, 35 to 36
@DMIN, 36 to 37
Documenting, macro, 99
DOS, command in macro, 160
{DOWN}, 125
@DSTD, 37 to 39
@DSUM, 39 to 40
@DVAR, 40 to 41

E

{EDIT}, 125
EDIT mode, running a macro
in, 99

Empty cells

and @AVG, 21

and @MAX, 58

and @MIN, 60

and @SUM, 79

in macro libraries, 179
Empty string, as argument, 13
{(END}, 125

Ending a macro, 97, 152
ENTER, 112
representing with ~ (tilde),
93
Entering
dates, 31

@function, help for, 3
macros, 96 to 97
Entry
checking, 23, 42
copying as a label, 120 to 122
counting, 28, 33 to 34
date, 30
entering with {PUT},
151 to 152
in macro, 135 to 136
number or label, 62, 74
removing spaces in, 84
time, 83
Entry form
creating with {FORM},
128 to 131
leaving with {FORMBREAK},
132t0 133
Equal operator (=), compared
with @EXACT, 43
Erasing a range, 116 to 117
@ERR, 42
in example, 15
ERR, 9, 28
in example, 23
label versus value, 42
preventing, 53, 74
produced by @ERR, 42
testing for, 53
Error
branching as a result of,
147 to 148
during macro, 101 to 103
fatal, 147
flagging with @ERR, 42
preventing, 48
syntax, 147
testing for, 9, 53
Error message, recording,
147 to 148
{ESCAPE}, 125
@EXACT, 42to 43
@EXP, 43
Exponential functions, 43,
57 to 58
Extracting text, 44

F

F3 (NAME), 100
@FALSE, 44
FALSE, as returned value, 9
Field
average value in, 31 to 32
counting nonblank cells, 33
defined, 6
greatest value in, 35 to 36

least value in, 36 to 37
name in argument, 31
Field argument, 6
Field name, 5
File manipulation macro
commands, 107
{CLOSE}, 120
{FILESIZE}, 125 to 126
{GETPOS}, 137
{OPEN}, 148 to 150
{READJ, 152 to 153
{READLN}, 153 to 154
{SETPOS}, 158
{WRITE}, 164
{WRITELN}, 165
{FILESIZE}, 125 to 126
Financial @functions, 8 to 9
@CTERM, 29
@DDB, 34 to 36
@FV,45to 46
@IRR, 50 to 51
@NPV, 64 to 65
@PMT, 66 to 67
@PV, 67 to 68
@RATE, 69 to 70
@SLN, 75 to 76
@SYD, 80 to 81
@TERM, 81 to 82
@FIND, 44 to 45
Finding
list entries, 25
table entries, 49
Flow-of-control macro
commands, 107 to 108
{BRANCH}, 117 to 118
{DEFINE}, 122 to 123
{DISPATCHY}, 124
{FOR}, 126 to 127
{FORBREAK}, 127 to 128
{IF}, 140 to 141
{ONERRORY}, 147 to 148
{QUIT}, 152
{RESTART}, 156
{RETURN}, 157
{subroutine}, 158 to 160
{FOR}, 126 to 127
ending current iteration, 157
repeating action on
subsequent rows, 73
For-next loop, 126 to 127
ending current iteration, 157
stopping, 127
stopping with {FORBREAK},
127 to 128
{FORBREAK}, 127 to 128
{FORM}, 128 to 131

Index 191

canceling with {RESTART},
156
Format
date and time, 7
@functions, 2
macro commands, 93
truncating values, 50
{FORMBREAK]}, 132 to 133
Formulas
determining dependent
values, 42, 63
ERRor NA in, 9
{FRAMEOFF}, 133 to 134
{FRAMEON}, 133 to 134
@Functions
add-in, 5
arguments, 3 to 4
database statistical, 5 to 7
date and time, 7 to 8
defined, 1 to 2
financial, 8 to 9
format, 2
logical, 9 to 10
mathematical, 10 to 11
rules, 3
special, 11 to 12
statistical, 12
string, 13 to 14
@Function types, 4 to 14
@Functions, unknown, 16
Future value, 9, 45 to 46
compounding term required,
29
rate needed to achieve,
69 to 70
@FV, 45 to 46

G

{GET}, 134 to 135
{GETLABELY}, 135 to 136, 171
{GETNUMBER]}, 136
{GETPOS}, 137

{GOTO}, 138

{GRAPH}, 138
{GRAPHOFF}, 138 to 139
{GRAPHON}, 138 to 139

H

{HELP}, 139

Help, 3

@HLOOKUP, 46 to 47
{HOME}, 139

Horizontal lookup, 46 to 47

192 Index

@HOUR, 47 to 48
Hour, finding the, 47 to 48

IBM Multilingual Character Set,
24,26
{IF}, 140 to 141
in example, 24, 28
with {BRANCH]}, 117
with {LET}, 142
@IF, 48
nesting, 48
with @@, 15
with @ABS, 17
with @CELL, 23
with @ERR, 42, 48
with @ISERR, 53
with @ISNA, 53
with @ISSTRING, 48
with @NA, 48
If-then-else, 140
@INDEX, 49
Index row, 46
{INDICATE}, 141 to 142
reversing (PANELOFF} with,

150

Indicator, 110

Indirect cell reference, 15 to 16

Input argument, 6

{INSERT}, 142

@INT, 50

Integer
calculating value, 50
random number, 69

Interactive macro commands,

108 to 109

{?}, 111 to 112
{BREAKOFF}, 118 to 119
{BREAKON}, 118 to 119
{FORM]}, 128 to 131
{FORMBREAK]}, 132 to 133
{GET}, 134 to 135
{GETLABELY}, 135 to 136
{GETNUMBER}, 136
{LOOK]}, 143 to 144
{MENUBRANCH},

144 to 147
{MENUCALLY}, 144 to 147
{SYSTEM}, 160 to 161
{WAIT}, 162

Interest rate
argument for financial

@functions, 8

calculating, 8

to achieve future value,
69 to 70
Internal rate of return, 50
International characters, codes,
24
Inverse
cosine, 17 to 18
sine, 18
tangent, 19 to 20
Investment
calculating periodic
payments, 66
comparing, 64, 68
compound term, 29
future value, 45
internal rate of return, 50
net present value, 64
present value, 67 to 68
rate to achieve future value,
69 to 70
term, 81 to 82
@IRR, 50 to 51
@ISAAF, 51 to 52
@ISAPP, 52
@ISERR, 53
@ISNA, 53 to 54
@ISNUMBER, 54 to 55
@ISSTRING, 55

K

Key names
{{t and {}}, 112
(~}, 112
(ABS}, 112
(APP1}, 113
{APP2}, 113
{APP3}, 113
{APP4}, 113
{BACKSPACE}, 115
{BIGLEFT}, 116
{BIGRIGHT}, 116
{CALC), 119
{DELETE}, 124
{DOWNY, 125
(EDIT}, 125
{END}, 125
{ESCAPE]}, 125
{GOTO}, 138
{GRAPH], 138
{HELP}, 139
{HOME}, 139
{INSERT}, 142
{LEFT}, 142
{MENUJ, 144

{(NAME]}, 147
{PGDN}, 151
{PGUP}, 151
{QUERY}, 152
{RIGHT}, 157
{TABLE]}, 161
{UP}, 161
{WINDOW}, 163
Keys
See also Key names
ALT-F2 (STEP), 103 to 104
ALT-F3 (RUN), 100
ALT-F4 (UNDO), 104
ALT-F5 (LEARN), 104
CTRL-BREAK, 101
CTRL-F1 (BOOKMARK),
104
F3 (NAME), 100
for add-ins, 109
macro key names, 109 to 110
Keystrokes
excluding with {FORM}, 129
in a macro, 92, 93
recording during macro,
134 to 135, 143 to 144
Keyword, 106

L

Label
and @AVG, 21
and @MAX, 58
and @MIN, 60
and @SUM, 79
checking, 74
comparing, 42 to 43
converting to number, 86
converting to time, 83 to 84
determining length, 56 to 57
entering in a macro,
135to0 136
entering with (PUT]},
151 to 152
from value, 78 to 79
macro instructions, 93
removing spaces in, 84
returning number of
characters in, 56 to 57
testing for with @ISSTRING,
55
Learn feature, 104 to 105
LEARN indicator, 104
{LEFT}, 142
@LEFT, 56
@LENGTH, 56 to 57
{LET}, 142 to 143
@LN, 57

Loan, determining payment,
66 to 67
Location argument, 3, 94, 166
@LOG, 57 to 58
Logarithm
common (base 10), 57 to 58
inverse natural logarithm, 43
natural (base e), 57
Logical expression, 140, 166
false, 44
true, 85
Logical @functions, 9 to 10
arguments for, 10
@FALSE, 44
@IF, 48
@ISAAF, 51 to 52
@ISAPP, 52
@ISERR, 53
@ISNA, 53 to 54
@ISNUMBER, 54 to 55
@ISSTRING, 55
@NA, 63
@TRUE, 85
Logical operators, 3
{LOOK]}, 143 to 144
Lookup, in a list, 25
Lookup table, 46 to 47, 49,
88 to 89
Loop
creating a, 117 to 118
rounding, 170 to 171
Lotus International Character
Set (LICS), 24, 26
@LOWER, 58
Lowercase, converting to, 58

M

Macro

/ (slash) in, 93

argument separators, 94

branching, 117 to 118

canceling, 101

categories, 106

common errors, 102

controlling screen, 110

creating, 96

defined, 91

DOS commands in, 160

ending, 97, 152, 156, 157

entering in a worksheet, 95,
96

entry during, 128 to 131

erasing data, 116 to 117

errors in, 101 to 103

excluding user keystrokes,
129

freezing screen display
during, 163

interactive, 108 to 109

keystrokes, 92 to 93

library, 177 to 187

looping, 171

mouse actions in, 92

naming, 98

numeric characters in, 93

pausing, 111 to 112, 162

placement, 95

preventing users from
stopping, 118 to 119

recalculation during, 101

recording user keystrokes,
134 to 135, 143 to 144

resuming, 132 to 133

returning from subroutine,
157

running, 99

running automatically, 100

running from library, 184

sample, 167 to 176

spaces in, 94

steps to create, 96 to 98

stopping, 118 to 119

suspending, 101, 111 to 112,
128 to 131, 162, 163

symbols, 93

tips for creating, 97

Macro commands

See also Flow-of-control
macro commands;
Interactive macro com-
mands; Screen control
macro commands

argument types, 94 to 95

arguments, 93

data manipulation, 106

file manipulation, 107

flow-of-control, 107 to 108

interactive, 108 to 109

keyword, 93

screen control, 110

syntax, 93

Macro key names, 109 to 110
Macro keyword, 92
Macro library, 177 to 187

and memory management,
179

creating, 182 to 183

erasing from disk, 186

loading automatically, 184

moving data between, 181

multiple, 179

recalculation of formulas in,
182

Index 193

referencing data in, 181
removing from memory, 186
saving formulas in, 181
size of, 179
updating, 185 to 186
using macros in, 184
Macro Library Manager
assigning to a key, 178
attaching automatically, 178
commands, 187
invoking, 178
starting, 178
using, 177 to 187
using on a network, 186
Macro names, 92, 98
\ (backslash), 98
range names, 98
MACROMGR.ADN, 178
Mailing labels, creating, 174
Mathematical @functions,
10to 11
@ABS, 17
@ACOS, 17 to0 18
arguments for, 10
@ASIN, 18
@ATAN, 19
@ATAN2, 19 to 20
@COS, 27 to 28
@EXP, 43
@INT, 50
@LN, 57
@LOG, 57 to 58
@MOD, 61
@P], 65 to 66
@RAND, 69
@ROUND, 72 to 73
@SIN, 75
@SQRT, 76
@TAN, 81
Mathematical symbols, codes,
24
@MAX, 58 to 59
Maximum value, 35 to 36,
58 to 59
Mean, 21, 31 to 32
standard deviation from,
37t039,77t0 78
variance from, 40 to 41,
87 to 88
Memory, for macro libraries,
179
{MENUJ, 144
Menu
creating, 144 to 147
in macro libraries, 180
macro, 173
Menu bar, freezing, 150

194 Index

MENU mode, running a macro
in, 99
{MENUBRANCH], 144 to 147
{MENUCALLY}, 144 to 147,173
@MID, 59
@MIN, 60
Minimum value, finding,
36 to 37, 60
@MINUTE, 60 to 61
@MOD, 61
to calculate day of the week,
61
Mode indicator, 110, 141 to 142
Modulus, 61
@MONTH, 62
Month, determining, 62
Mouse, and learn feature, 104

N

@N, 62
@NA, 63
NA, 9,28
label versus value, 53, 63
preventing, 48, 53
produced by @NA, 63
testing for, 53 to 54
{(NAME]}, 147
Name, macro, 98
Natural logarithm, 57
inverse, 43
Negative values, and @ABS, 17
Nested subroutines, 159
canceling return sequence,
156
Nesting, @IF, 48
Net present value, 9, 64 to 65
Network, Macro Library
Manager on, 186
@NOW, 63 to 64, 169
extracting hour, 47
extracting minutes, 60
extracting seconds, 74
@NPV, 64 to 65
Number
calculating root, 57
converting to label, 78 to 79
even, 61
from label, 86
in a macro, 93
integer value, 50
odd, 61
random, 69
square root, 76
testing for, 54 to 55

O

Offset number, 2, 6, 25
field, 31

{ONERROR}, 147 to 148

{OPEN}, 148 to 150

P

{PANELOFF}, 150, 170
{PANELON}, 150, 170
Parentheses, and arguments, 2,
3
Pause, in a macro, 111 to 112
Payments, 9, 66 to 67
investment, 81 to 82
Period, compounding, 29
{PGDN}, 151
{PGUP}, 151
@P], 65 to 66
in example, 18, 28
to convert
degrees to radians, 27
to convert
radians to degrees, 18
Pi, 65 to 66
@PMT, 66 to 67
Pointer-movement keys, macro
for, 168
Positive values
forcing with @ABS, 17
testing for, 17
Present value, 9, 67 to 68
of an investment, 50
Printing
foreign-language characters,
24
line length, 57
size of range, 27, 73
symbols, 24
Prompt, creating for user entry,
135to 136
@PROPER, 67
{PUT}, 151 to 152
@PV, 67 to 68

Q

{QUERY}, 152

{QUIT}, 152

Quotation marks and string
arguments, 2

R

Radians, converting to degrees,
18
@RAND, 69
Random number, 69
Range
counting nonblank cells, 28
determining size, 27, 73
greatest value, 58 to 59
learn, 104
least value, 60
Range name, 95, 98
and subroutine, 158 to 159
in macro libraries, 180
location argument, 4
macro name, 98
Range references, in macros, 97
@RATE, 69 to 70
Rate of return, 9
{READ}, 152 to 153
Reading a text file, 153 to 154
{(READLN}, 153 to 154
READY mode, running a macro
in, 99
{RECALC}, 154 to 155
{RECALCCOLJ}, 154 to 155
Recalculation
during macros, 101
in a macro, 154 to 155
Reciprocal
of sine, 75
of tangent, 81
Relational operators, 3
Remainder, 61
Removing
See also @TRIM
control characters from a
string, 25 to 26
@REPEAT, 70
Repeating characters, 70
@REPLACE, 71
Replacing characters, 44, 71
{RESTART}, 156
Retrieving, a file that contains
auto-execute macro, 100
{RETURN}, 157
and {FOR}, 157
{RIGHT}, 157
@RIGHT, 71 to 72
Right triangle, 18, 27, 75, 81
Ripple-through effect, avoiding,
42,53,63
Root, square, 76
@ROUND, 72 to 73, 170
Rounding, 72 to 73
versus truncating, 50

Row, shifting to top of screen,
168

Rows, number in a range, 73

Row numbers, suppressing
display of, 133 to 134

@ROWS, 73

Running a macro, 99 to 101

S

@s, 74
Sample macros, 167 to 176
SAMPMACS. WK1, 167
Screen control macro
commands, 110
{BEEP}, 115 to 116
{BORDERSOFF}, 117
{BORDERSON}, 117
{FRAMEOQFF}, 133 to 134
{FRAMEON}, 133 to 134
{GRAPHOFF}, 138 to 139
{GRAPHON}, 138 to 139
{INDICATE}, 141 to 142
{PANELOFF}, 150
{PANELON}, 150
{WINDOWSOFF}, 163
{WINDOWSON}, 163
Searching, 44 to 45
by dates, 30
@SECOND, 74
Second, determining, 74
{SETPOS}, 158
Settings
assigned to a cell, 22 to 23
changing, 23
@sSIN, 75
Sine, 75
inverse, 18
Single cell
entire macro in a, 95
macro comand, 95
Size, of a range, 27, 73
@SLN, 75 to 76
Sorting, chronological order, 30
Spaces, removing, 84
Spacing, in a macro, 94
Special @functions, 11 to 12
@?,16
@@, 15t0 16
@CELL, 22 to 23
@CELLPOINTER, 23 to 24
@CHOOSE, 25
@COLS, 27
@ERR, 42
@HLOOKUP, 46 to 47
@INDEX, 49
@ROWS, 73

@VLOOKUP, 88 to 89
@SQRT, 76
and @ABS, 17
Square root, 57, 76
and @ABS, 17
Standard deviation, 37 to 39,
77 t0 78
relation to variance, 38
Statistical @functions, 12
arguments for, 12
@AVG, 21
compared with database
statistical @functions, 12
@COUNT, 28
@MAX, 58 to 59
@MIN, 60
@STD, 77 to 78
@SUM, 79 to 80
@VAR, 87 to 88
@STD, 77 to 78
STEP mode, 102
Straight-line depreciation,
75t0 76
@STRING, 78 to 79
String argument, 3, 95, 111
See also Text
empty string, 13
String @functions, 13 to 14
arguments for, 2, 3, 13
@CHAR, 24
@CLEAN, 25 to 26
@CODE, 26
@EXACT, 42to 43
@FIND, 44 to 45
@LEFT, 56
@LENGTH, 56 to 57
@LOWER, 58
@MID, 59
@N, 62
@PROPER, 67
@REPEAT, 70
@REPLACE, 71
@RIGHT, 71 to 72
@s, 74
@STRING, 78 to 79
@TRIM, 84
@UPPER, 85 to 86
@VALUE, 86
Subroutine, 158 to 160
arguments for, 122 to 123
calling, 144 to 147, 159
canceling return sequence,
156, 159
ending, 92, 157
in macro libraries, 180
name, 158 to 159
nesting, 159

Index 195

{QUIT} in, 152
range name, 158 to 159
returning from, 157, 159
Subroutine call, 173
Suffix, in a macro, 123
@SUM, 79 to 80
Suspending macro
for specified time, 162
for user entry, 128 to 131
temporarily, 111 to 112
@SYD, 80 to 81
Symbols, 93
Syntax, macro commands, 93
{SYSTEM}, 160 to 161

T

{TABLE}, 161
Table entries
finding with @HLOOKUP,
46 to 47
finding with @VLOOKUP,
88 to 89
Table, lookup, 46 to 47, 88 to 89
@TAN, 81
Tangent, 81
inverse, 19 to 20
@TERM, 81 to 82
Term
argument for financial
@functions, 8
calculating, 9
compound, 9, 29
of an investment, 81 to 82
Text
capitalization, 58, 67, 85 to 86
comparing, 42 to 43
converting to number, 86
determining length, 56 to 57
ensuring in text formulas, 74
removing spaces in, 84
repeating, 70
replacing, 71
string @functions, 13 to 14
testing for, 55
user entry in macro,
135 to 136
Text file, 107
access, 148 to 150
byte pointer position, 137
closing, 120
copying from, 152 to 154
copying to, 164 to 165
moving the byte pointer, 158
opening, 148 to 150

196 Index

reading, 152
size, 125 to 126
Text formula, 4
Tilde, 92
@TIME, 83
extracting hour, 47
extracting minutes, 60
extracting seconds, 74
Time
converting labels, 83 to 84
current, 8, 63 to 64
entering, 83 to 84
formats, 7
@functions, 7 to 8
Time number, 7, 83 to 84
@TIMEVALUE, 83 to 84
extracting hour, 47
extracting minutes, 60
extracting seconds, 74
Title bar, freezing, 150
Tone
macro for sounding a, 110
sounding computer, 115
Total, 39 to 40, 79 to 80
Trigonometric @functions
@ACOS, 17 to 18
arc cosine, 17 to 18
arc sine, 18
arc tangent, 19
@ASIN, 18
@ATAN, 19
@ATAN2, 19 to 20
@COS, 27 to 28
cosine, 27 to 28
@PI used with, 65
@SIN, 75
sine, 75
@TAN, 81
tangent, 81
@TRIM, 84
Troubleshooting macros,
101 to 103
@TRUE, 85
TRUE, as returned value, 9
Typeahead bulffer, 143

U

{UP}, 161

@UPPER, 85 to 86

Uppercase, changing to,
85 to 86

User entry, in a macro,
108 to 109

V

@VALUE, 86
Value, 86

adding, 39 to 40, 79 to 80
checking for, 62

converting to a label, 78 to 79
€ (2.718282),43

even, 61

greatest in a field, 35 to 36
greatest in a range, 58 to 59
least in a field, 36 to 37
least in a range, 60

odd, 61

pi, 65

random number, 69

square root, 76

testing for, 54 to 55

Value argument, 3, 95, 111
@VAR, 87 to 88
Variance, 40 to 41, 87 to 88

relationship to standard
deviation, 41

Vertical lookup, 88 to 89
@VLOOKUP, 88 to 89

W

{WAIT}, 162
(WINDOW}, 163
Window

display in macro, 163
freezing during macro, 163

{WINDOWSOFF}, 163, 170
{WINDOWSON}, 163, 170
Worksheet frame, suppressing

display of, 133 to 134

Worksheet, recalculating, 154
{WRITE}, 164
{WRITELN}, 165

Y

@YEAR, 90
Year, determining, 90

